

Dust Monitoring Compliance Thursday, September 14, 2023

Morning Program

9:00	Welcome	10:45	In
9:05	Overview and Updates of CDPH Regulatory and		Δ
	Community Air Monitoring Approaches Michael Enos, CDPH	11:10	Ne
9:40	Regional and National Regulatory Overview Brian Newgent and Claire Amin, Aeroqual	11:35	То
10:05	Monitoring Program Design and Data Analysis		
	Considerations Volker Schmid, CleanAir	12:00	LU
10:30	BREAK		

CleanAir Workshops

tro to Site Contribution Analysis and Aeroqual's Site Contribution Tool Connor Porter, Aeroqual **ew Developments for Special Applications** Don Allen and Volker Schmid, CleanAir **op 10 Support Questions** Don Allen, CleanAir, and Connor Porter, Aeroqual **JNCH**

Regional and National Regulatory Overview

Air & Dust Monitoring Solutions for Environmental Professionals – *"Air Monitoring Made Easy!"*

CleanAir Workshops

Dust Monitoring Compliance

aeroqual

Protecting people and planet from the harmful effects of air pollution starts with reliable and actionable air quality data.

- Founded in 2001, we pioneered the use of sensors for monitoring the quality of ambient air
 - Coined the term "Near-Reference"
- Today we are the leading air quality monitoring platform
 - Integrated instrumentation and software
 - 6 sensor technology patents
 - 10M+ air monitoring measurements daily
 - 100+ regional partners globally
 - U.S. EPA R&D collaboration agreement

CleanAir Workshops

Dust Monitoring Compliance

The U.S. EPA announced a 5-year Cooperative Research and Development Agreement (CRADA) with Aeroqual.

"EPA is looking forward to collaborating with Aeroqual to improve knowledge of air sensor technologies, explore applications, and better understand the challenges of these devices such as calibration and performance over long time periods."

EPA Combines Expertise with New Zealand Company to Advance Air Sensor Technologies | US EPA

- Dr. Rachelle Duvall of U.S. EPA's Office of Research and Development

Our Credentials

U.S. EPA Collaboration

Aeroqual has a five-year Cooperative Research and Development Agreement (CRADA) with the U.S. EPA to advance air sensor technologies

ASTM International

Member of ASTM International Air Quality Committee (D22) developing new standard WK64899 for air quality sensors installed in cities, communities, and industrial sites.

MCERTS certification

World's first nephelometer to meet the UK Environmental Agency's MCERTS indicative particle monitoring standard. This drives preapproval for use in US and global regulations.

Rule 1466 pre-approved

Aeroqual Dust Sentry is pre-approved by Executive Officer for SCAQMD for compliance monitoring under Rule 1466 and Rule 403 in California.

Dust Monitoring Compliance

cleanair.com/workshops/dust

MET ONE inside

Met One proven particle sensing technology has been integrated inside our products since 2009. Met One technology is used by 85% of U.S. environmental agencies.

ISO 9001:2015 Certified

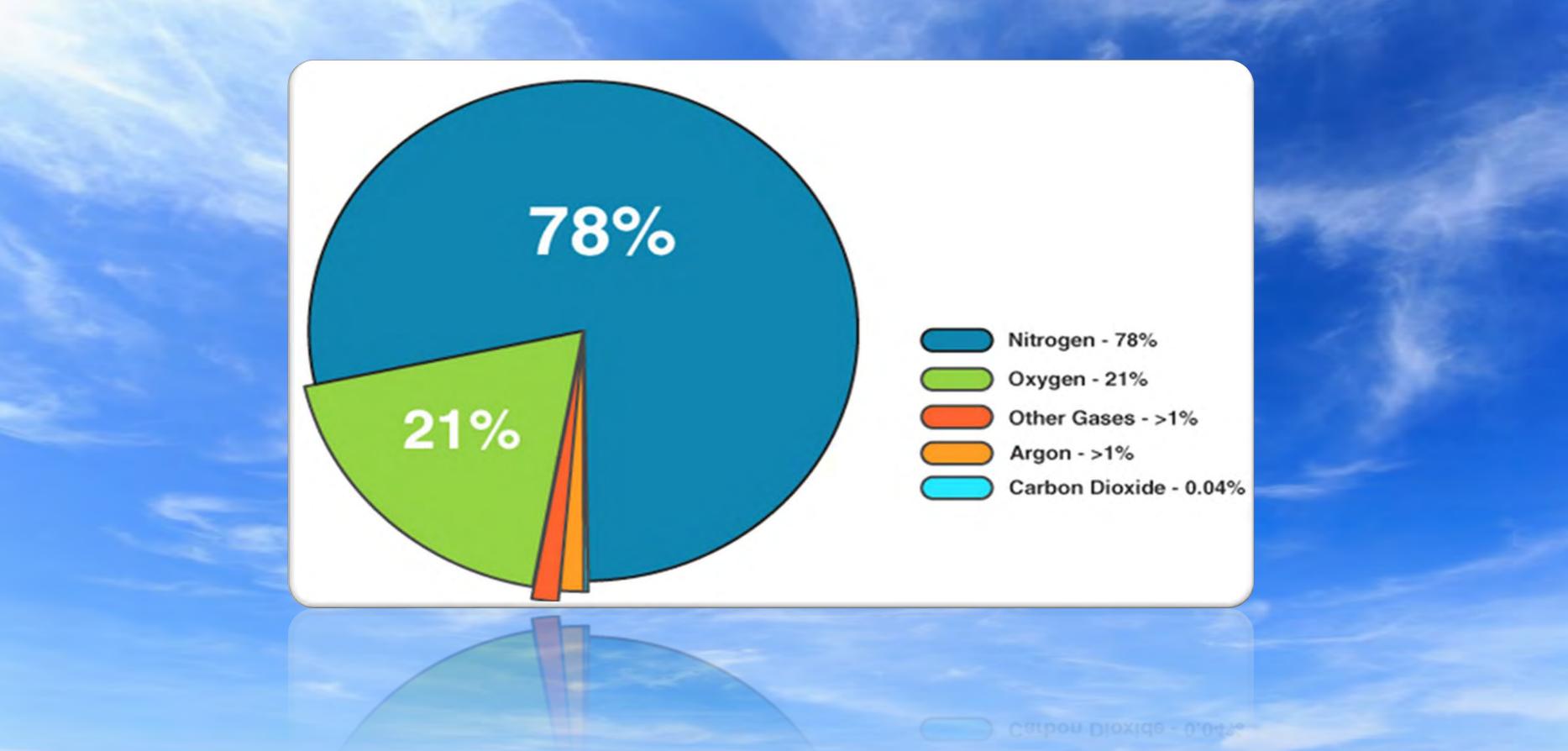
We operate a quality management system accredited to ISO 9001:2015 which requires stringent process adherence and speaks to the high level of QA/QC.

Q0 00

Aeroqual Connected Air Monitors

Two-way Integration | Cloud Storage | Real-Time Data and Alerts

"We Make it Easier to Monitor Air Quality"



Dust Monitoring Compliance

- 6,582 Global
- 100 Regional Partners
- 7M+ datapoints /day
- 99% Data Uptime

What is the basic composition of "Air"?

Dust Monitoring Compliance

CleanAir Workshops

1963 Clean Air Act – Hazardous Air Pollutants

"Toxic pollutants that are known or suspected to cause cancer or other serious health effects"

There are about 187 hazardous air pollutants

(HAPs) that EPA is required to control.

List of 50 cm		Mercury compounds	
Acetaldehyde	Dioxin	Methylene chloride (dichloromethane)	
	Propylene dichloride	Nickel compounds	
Acrolein	1,3-dichloropropene	in insted hiphenyls (PCBs)	
Acrylonitrile	Ethylene dichloride (1,2-dichloroethane)	Polycyclic organic matter (POM)	
Arsenic compounds	Ethylene oxide	Quinoline	
Benzene	Formaldehyde	1,1,2,2-tetrachloroethane	
Beryllium compounds	Hexachlorobenzene	1,1,2,2-tetrachtoree Tetrachloroethylene (perchloroethyle	
1,3-butadiene			
Cadmium compounds	Hydrazine	Trichloroethylene	
Chloroform	Lead compounds	Vinyl chloride	
Chromium compound	ds Manganese compounds		

Dust Monitoring Compliance

CleanAir Workshops

cleanair.com/workshops/dust

photo © Clarence Holmes Photography/Alamy)

Pittsburgh 1936 vs. 2014

1970 EPA Establishes Criteria Pollutants

Criteria Air Pollutants can be harmful to public health and the environment

The Clean Air Act requires EPA to set National Ambient Air Quality Standards (NAAQS) for six common air pollutants (also known as "criteria air pollutants")

Dust Monitoring Compliance

CleanAir Workshops

National Ambient Air Quality Standards

Criteria Air Pollutants can be harmful to public health and the environment

Pollutant [links to historical tables of NAAQS reviews]		Primary/ Secondary	Averaging Time	Level	Form
<u>Carbon Monoxide (CO)</u>		primary	8 hours	9 ppm	Not to be exceeded more than once per year
			1 hour	35 ppm	
Lead (Pb)		primary and secondary	Rolling 3 month average	0.15 μg/m ^{3 (<u>1)</u>}	Not to be exceeded
<u>Nitrogen Dioxide (NO₂)</u> Ozone (O ₃)		primary	1 hour	100 ppb	98th percentile of 1-hour daily maximum concentrations, averaged over 3 years
		primary and secondary	1 year	53 ppb ⁽²⁾	Annual Mean
		primary and secondary	8 hours	0.070 ppm ^[3]	Annual fourth-highest daily maximum 8- hour concentration, averaged over 3 years
Particle Pollution (PM)	PM _{2.5}	primary	1 year	12.0 µg/m ³	annual mean, averaged over 3 years
		secondary	1 year	15.0 µg/m ³	annual mean, averaged over 3 years
		primary and secondary	24 hours	35 µg/m ³	98th percentile, averaged over 3 years
	PM ₁₀	primary and secondary	24 hours	150 µg/m ³	Not to be exceeded more than once per year on average over 3 years
Sulfur Dioxide (SO ₂)		primary	1 hour	75 ppb ^{(<u>4)</u>}	99th percentile of 1-hour daily maximum concentrations, averaged over 3 years
		secondary	3 hours	0.5 ppm	Not to be exceeded more than once per year

CleanAir Workshops

CleanAir.

Dust Monitoring Compliance

cleanair.com/workshops/dust

Primary Standards provide health protection, including sensitive populations – asthmatics, children, and the elderly Secondary Standards provide public welfare protection (decreased visibility and damage to animals, crops, vegetation, and buildings

EPA must designate areas as meeting (attainment) or not meeting (nonattainment) the standard. The Clean Air Act requires states to develop a general plan to attain and maintain the standards in all areas of the country and a specific plan to attain the standards for each area designated nonattainment.

> □ These plans, known as State Implementation Plans or SIPs, are developed by state and local air quality management agencies and submitted to EPA for approval.

Recent or Proposed Changes (EPA)

CleanAir Workshops

Dust Monitoring Compliance

ARP American Rescue Plan - Enhanced Air Quality Monitoring for Communities

- June 25, 2021 ARP American Rescue Plan -Enhanced Air Quality Monitoring for Communities
- Replace existing filter-based PM2.5 monitors or enhance existing to provide 24/7, real-time reporting
- □ Automation of PM2.5 Monitors
- Enhanced monitoring of PM2.5 and five other air pollutants regulated by the National Ambient Air Quality Standards under the Clean Air Act
- Conduct monitoring of pollutants of greatest concern
- For Agency mobile monitoring labs or Air Sensor Loan Programs. (Short-term monitoring and air quality information)

CleanAir Workshops

Dust Monitoring Compliance

EPA Proposal to Reduce Methane

 November 11, 2022 - The U.S. Environmental Protection Agency (EPA) announced it is strengthening its proposed standards to cut Methane and other harmful air pollution.
 The agency estimates that in 2030, the proposal

- would reduce methane from "Super Emitter" sources by 87 percent below 2005 levels.
- EPA projects that the proposed standards would reduce an estimated 36 million tons of methane emissions from 2023 to 2035, the equivalent of 810 million metric tons of carbon dioxide.

CleanAir Workshops

Dust Monitoring Compliance

EPA Proposed Changes to PM2.5 Standard

Pollutant Primary/ Averaging [links to historical tables of Level Form Secondary Time NAAQS reviews] 8 hours 9 ppm Not to be exceeded more than once per Carbon Monoxide (CO) primary year 1 hour 35 ppm primary Rolling 3 month 0.15 µg/m³ (1) Not to be exceeded Lead (Pb) and average secondary 98th percentile of 1-hour daily maximum 100 ppb primary 1 hour concentrations, averaged over 3 years Nitrogen Dioxide (NO2) primary 53 ppb (2) Annual Mean and 1 year secondary Annual fourth-highest daily maximum 8primary Ozone (O3) 0.070 ppm [3] hour concentration, averaged over 3 and 8 hours years secondary 12.0 µg/m³ annual mean, averaged over 3 years primary 1 year 15.0 µg/m³ secondary 1 year annual mean, averaged over 3 years PM2.5 primary **Particle Pollution** and 24 hours 35 µg/m³ 98th percentile, averaged over 3 years (PM) secondary primary Not to be exceeded more than once per PM10 and 24 hours 150 µg/m³ year on average over 3 years secondary 99th percentile of 1-hour daily maximum 1 hour 75 ppb (4) primary concentrations, averaged over 3 years Sulfur Dioxide (SO₂) Not to be exceeded more than once per 3 hours 0.5 ppm secondary year

EPA Proposes to Strengthen Air Quality Standards to Protect the Public from Harmful Effects of Soot | US EPA

Dust Monitoring Compliance

CleanAir Workshops

cleanair.com/workshops/dust

January 6, 2023 - EPA announced its proposed decision to revise the primary (health-based) annual **PM2.5 standard** from its current level of 12.0 μ g/m3 to within the range of 9.0 to 10.0 μ g/m3

QO 00

EPA Proposal to Reduce Ethylene Oxide

 April 11, 2023, EPA proposed new requirements for 86 commercial sterilizers across the country.
 These requirements, if implemented, will reduce the amount of **Ethylene Oxide** Emissions EtO that comes out of commercial sterilizers by 80 percent

Proposal to Reduce Ethylene Oxide Emissions from Commercial Sterilization Facilities | US EPA

CleanAir Workshops

Dust Monitoring Compliance

EPA announced a new review of the Ozone National Ambient Air Quality Standards (NAAQS)

August 21, 2023 EPA announced a new review of the Ozone National Ambient Air Quality Standards (NAAQS) to ensure the standards reflect the most current, relevant science and protect people's health from these harmful pollutants CleanAir Workshops

Dust Monitoring Compliance

- May 3, 2010 New York State Department of Environmental Conservation (DEC) remedial programs Issues
 - DER-10, Technical Guidance for Site Investigation and Remediation administered by the Division of Environmental Remediation (DER) (New Rules coming soon)
 - VOC action levels > 5ppm and >25 ppm above background
 - PM10 action levels >100 Ug/M3 above Upwind (15min Avg), >150 Ug/M3 above Upwind (15min Avg)
- April 19, 2021 Chicago Department of Public Health Demolition by Implosion
 - The Comprehensive Plan must include a comprehensive air monitoring plan that investigates air quality impacts from Fugitive Dust prior to Implosion and a plan for the monitoring of PM 10 in the air before, during, and after Implosion activities using instruments designated as Federal Equivalent Method (FEM) by EPA or meet the requirements for a Near Reference PM 10 Monitor
- January 1, 2023 SCAQMD Rule 1466 Amendment
 - PM10 calculation methodology require calculation of the two-hour PM10 average concentration as a rolling average every minute
 - Clarify that PM10 average calculation restarts when resuming earth-moving activities after addressing a PM10 concentration exceedance
 - **Revise wind monitoring requirements**
 - Action Levels If the PM10 site activity contribution (downwind minus upwind concentration) exceeds 25 micrograms per cubic meter (µg/m3) averaged over one hour...earth-moving operations cannot recommence until the particulate contribution drops below 25 µg/m3 averaged over 30 minutes.
- March 7, 2023 Chicago Department of Public Health Revises Rules for Reprocessable Construction/Demolition Material Facilities
 - Chicago's new rule for waste reprocessing facilities allows the use of near-reference PM10 monitors that are SCAQMD 1466 approved.
 - Reportable Action Level is the PM10 concentrations above 150 micrograms per cubic meter averaged over a 15-minute period.
 - Facilities using FEM monitors may subtract the upwind PM10 concentration from the downwind PM10 concentration in determining a PM10 RAL exceedance.

Dust Monitoring Compliance

CleanAir Workshops

Methods for Measuring Pollutants

CRITERIA POLLUTANTS

OTHER POLLUTANTS OF CONCERN

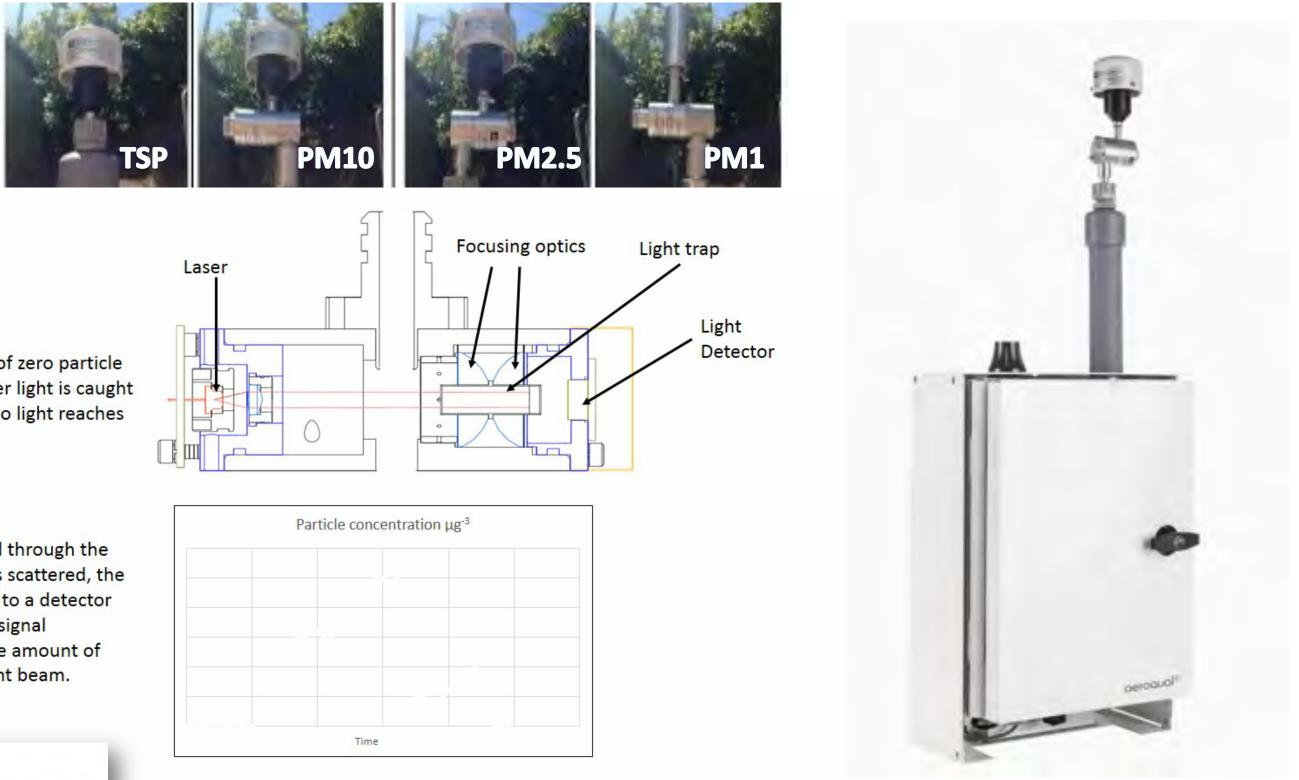
Pollutant	EPA Reference Method	EPA Equivalent Method (or Measurement Technology for Non-Criteria Pollutants)	Near Reference (* w/ ABC – Automatic Baseline Correction)
Ozone	UV Photometric Ozone Analyzer	UV Absorption O3 AnalyzerChemiluminescence Ozone Analyzers	*AQM LZ (0-500 ppb) GSS (Gas Sensitive Semiconductor)
Sulphur Dioxide	Pararosaniline Method (Manual)	UV Fluorescence SO2 Analyzer	*AQM SOL (0-10000 ppb) GSE (Gas Sensitive Electrochemical)
Carbon Monoxide		Gas Filter Correlation CO Analyzer	*AQM CO (0-25 ppm) GSE (Gas Sensitive Electrochemical)
Nitrogen Dioxide		 Chemiluminescence NO/NO2/NOx Analyzer CAPS True NO2-NOX-NO Analyzer (Cavity Attenuated Phase Shift Spectroscopy) 	*AQM NO2 (0-500 ppb) GSE (Gas Sensitive Electrochemical)
Lead	Physical Sample Collection with Lab Analysis		NA
Particulate Matter	Gravimetric High-Volume	 Broadband spectroscopy ,LED technology w/ well- understood light scattering theory BAM TEOM 	Dust Sentry, PMX (Nephelometer/Particle Counter)
Carbon Dioxide	Performance Based	Gas Filter Correlation CO2 Analyzer	*AQM CD (0-2000 ppm) NDIR (Non-Dispersive Infra-Red)
Nitrogen Oxides	Performance Based	 Chemiluminescence NO/NO2/NOx Analyzer CAPS True NO2-NOX-NO Analyzer (Cavity Attenuated Phase Shift Spectroscopy) 	*AQM NX (0-0.5 ppm) GSS (Gas Sensitive Semiconductor)
Hydrogen Sulfide	Performance Based	UV Fluorescence H2S Analyzer	*AQM HSL (0-10000 ppb) GSE (Gas Sensitive Electrochemical)
Volatile Organic Compounds (VOC)	Performance Based	Performance Based	*AQM VOC (L/H) (0-500 ppb or 0-30 ppm) PID (Photoionization Detector) GC-PID, GC–FID, GC-MS
Methane	Performance Based	Performance Based	*AQM MT (0-100 ppm) GSS (Gas Sensitive Semiconductor) FID
BTEX (Benzene, Toluene, Ethylbenzene, and Xylene)	Performance Based	Performance Based	AQM BTEX (0.1 – 50 ppb) GC (Carrier Gas Free Miniature Gas Chromatograph GC PID
Ethylene Oxide	Performance Based	Cavity Ring-Down Spectroscopy	NA

Dust Monitoring Compliance

CleanAir Workshops

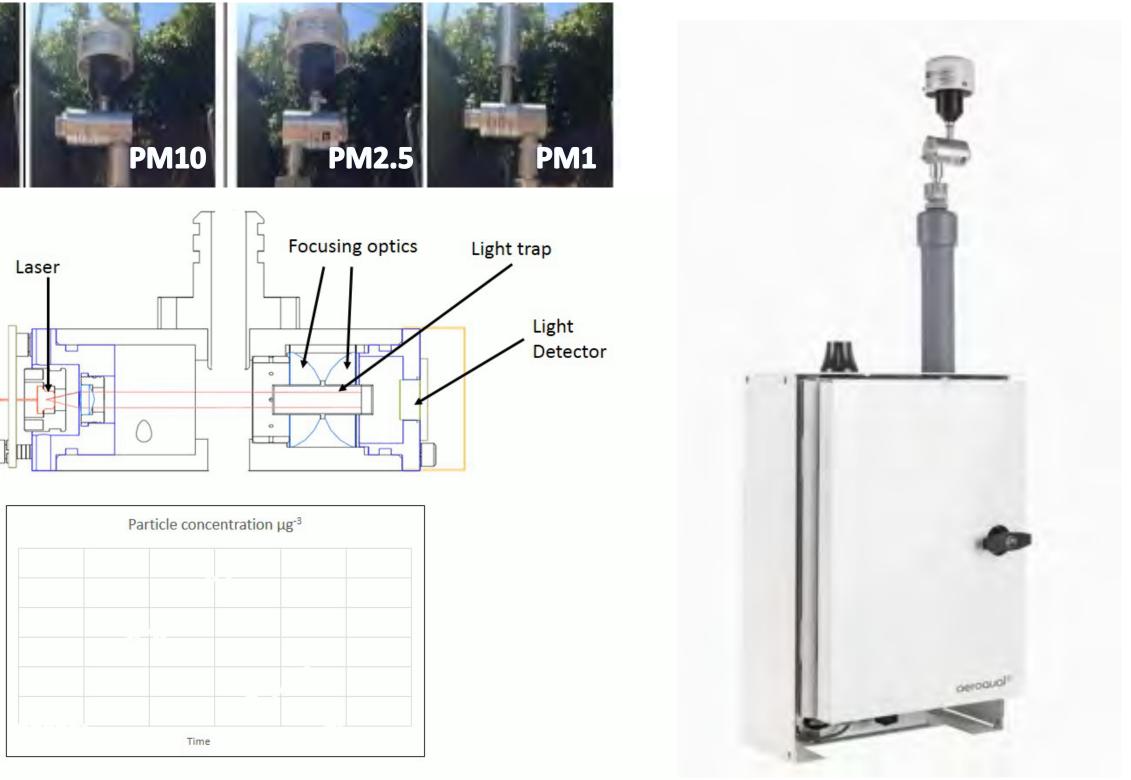
Our Product

Real-Time, Actionable and Defensible Data


Available sensors: PM10, PM2.5, PM1, TSP, NO2, CO, CO2, O3, SO2, NOx, VOC, H2S, Meteorological, noise + 3rd party

CleanAir Workshops

Dust Monitoring Compliance


Dust Sentry (Nephelometer)

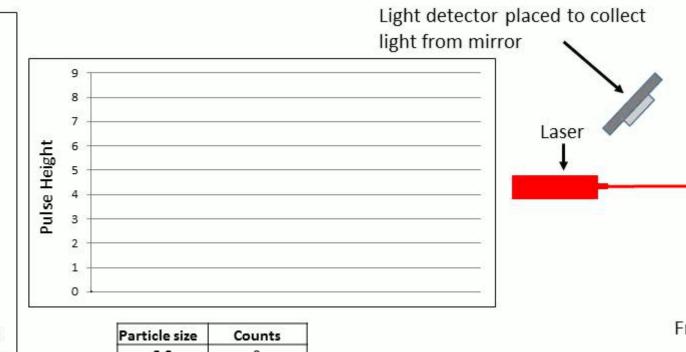
Under conditions of zero particle load, all of the laser light is caught by the light trap, no light reaches the detector.

When particles fall through the laser beam, light is scattered, the light is focused on to a detector which produces a signal proportional to the amount of particles in the light beam.

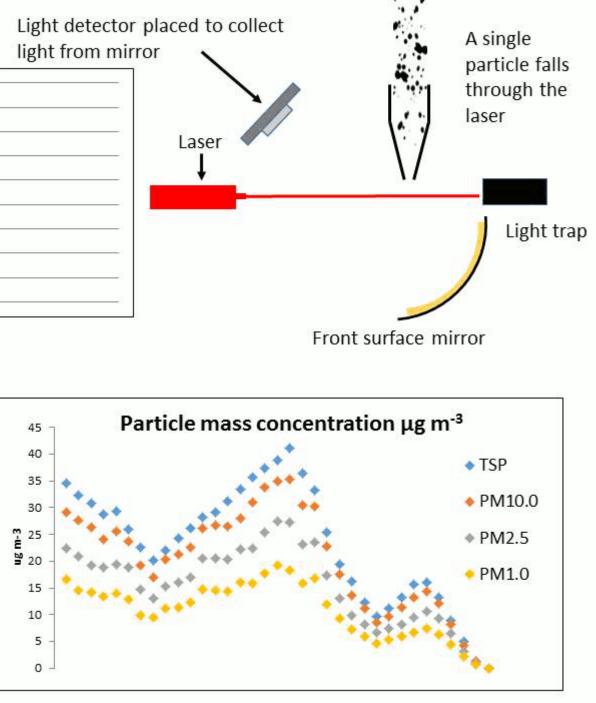
Replace existing filter-based PM2.5 monitors or enhance existing to provide 24/7, real-time reporting of air quality concentrations

CleanAir Workshops **Dust Monitoring Compliance**

Dust Sentry PCX and Pro (Particle Counter)


Under conditions of zero particle load, all of the laser light is caught by the light trap, no light reaches the detector.

When a <u>single</u> particle falls through the laser beam, light is scattered, some light is captured by the mirror and then focused upon the detector. The amount of light scattered depends on the particle size.


Each particle results in a single pulse which is <u>counted</u>, the <u>height</u> of the pulse is proportional to the <u>size</u> of the particle. The counts accumulate over a fixed sampling time.

After the fixed sampling time, particle counts are mathematically converted in to mass to provide particle concentrations in four sizes: TSP, PM10.0, PM2.5 and PM1.0. The mass measurement is recorded. Then the counts are set to zero and the process is repeated for another measurement cycle.

This results in a time series of four particle size fractions TSP, PM10.0, PM2.5 and PM1.0.

Particle size	Counts
0.3	0
0.5	0
0.7	0
1.0	0
2.0	0
3.0	0
5.0	0
10.0	0
J	f(x)
	$\downarrow\downarrow$
TSP	0
TSP PM10.0	(Dertador)
	0

Replace existing filter-based PM2.5 monitors or enhance existing to provide 24/7, real-time reporting of air quality concentrations

Dust Monitoring Compliance

Aeroqual Analyzer Modules

Delivering Near-Reference Levels of Performance for AQM/AQS

Conduct monitoring of pollutants of greatest concern

Strengthening its proposed standards to cut Methane and other harmful air pollution

CleanAir Workshops

Dust Monitoring Compliance

cleanair.com/workshops/dust

GSS Our Gas Sensitive Semiconductor sensors use proprietary sensing material, built-in **ABC** (Automatic Baseline Correction) and interference rejection. This combination results in ppb resolution and a highly linear response.

GSE Our Gas Sensitive Electrochemical sensors generate nano-amp currents proportional to the gas concentration. Aeroqual uses low noise electronics to capture these signals resulting in low detection levels.

NDIR Our Non-Dispersive Infra-Red sensors use infrared light, a narrow band-pass filter and photodiode to measure the intensity of light at the gas absorption band. The light intensity is proportional to the gas concentration.

PID Our Photo Ionization Detector sensors use a krypton filled UV lamp to ionize VOC gas molecules and generate a current that's proportional to the VOC concentration. The PID sensor responds to a wide range of VOCs and is industry recognized.

Aeroqual Ranger

Cloud Connected | Zero Calibration Downtime

CO

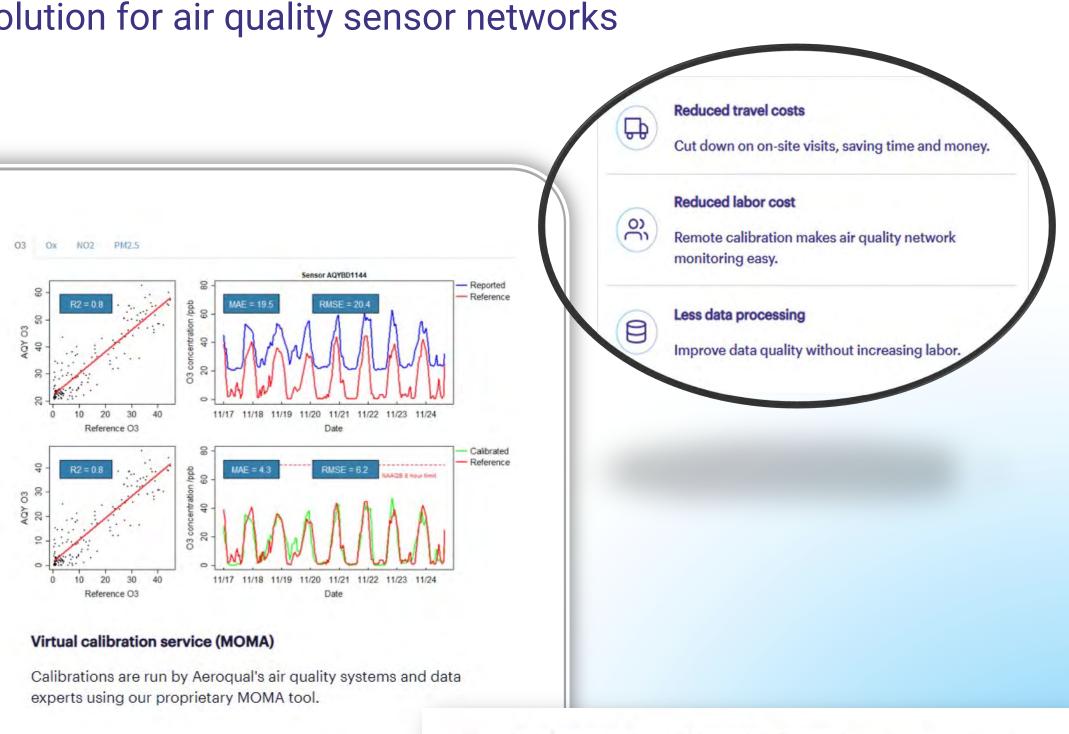
CH-O

CleanAir Workshops **Dust Monitoring Compliance**

cleanair.com/workshops/dust

28 Sensor Heads Spanning 14 Gases plus PM

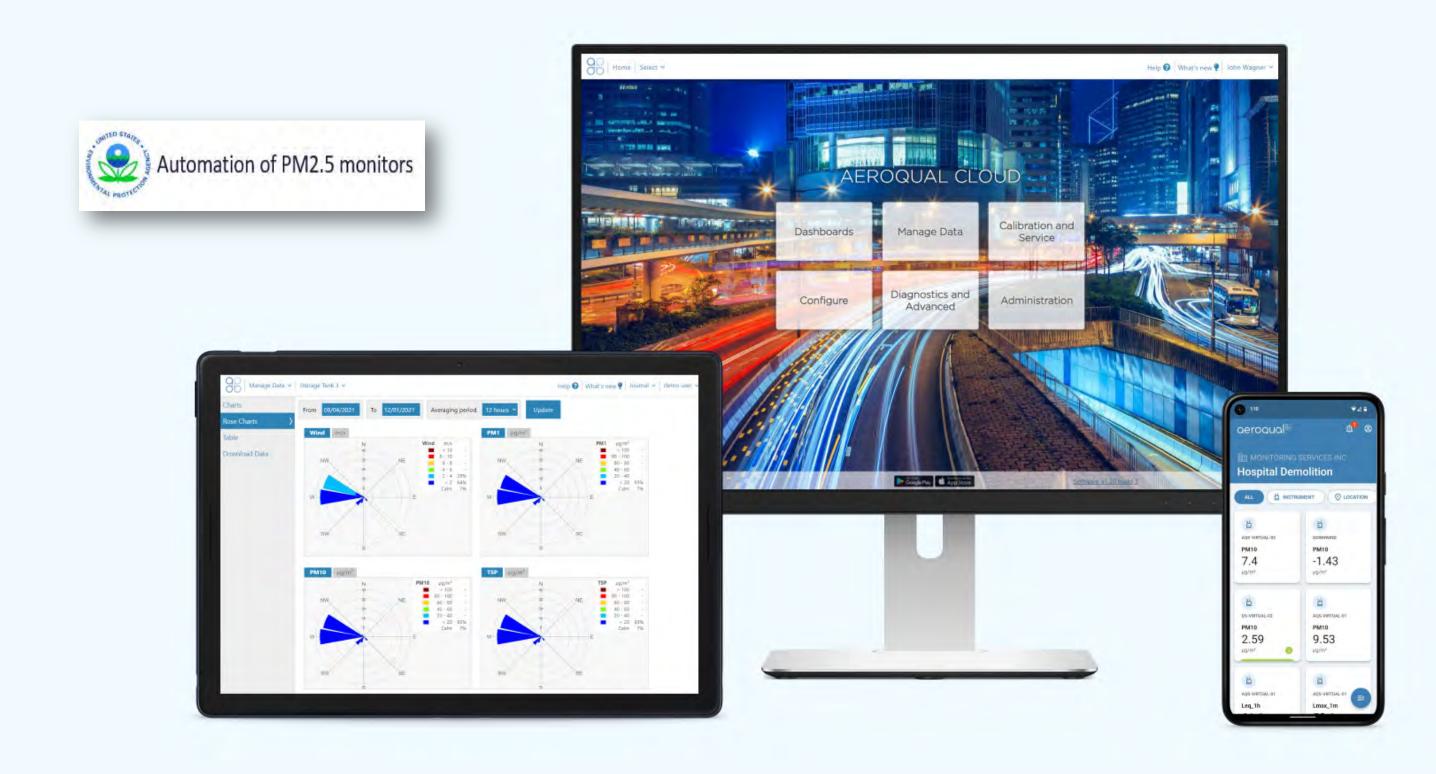
Aeroqual MOMA



A complete pollution monitoring software solution for air quality sensor networks

Aeroqual smart monitors or BYOD*

Unify's complete air quality network solution is compatible with one of Aeroqual's connected instruments and a range of third party devices.


CleanAir Workshops **Dust Monitoring Compliance**

- ARP Enhanced Air Quality Monitoring for Communities
- Proposed decision to revise the primary (health-based) annual PM2.5 standard from its current level of 12.0 µg/m3 to within the range of 9.0 to 10.0 µg/m3
- Automation of PM2.5 monitors
- Replace existing filter-based PM2.5 monitors or enhance existing to provide 24/7, real-time reporting of air quality concentrations

Aeroqual Cloud

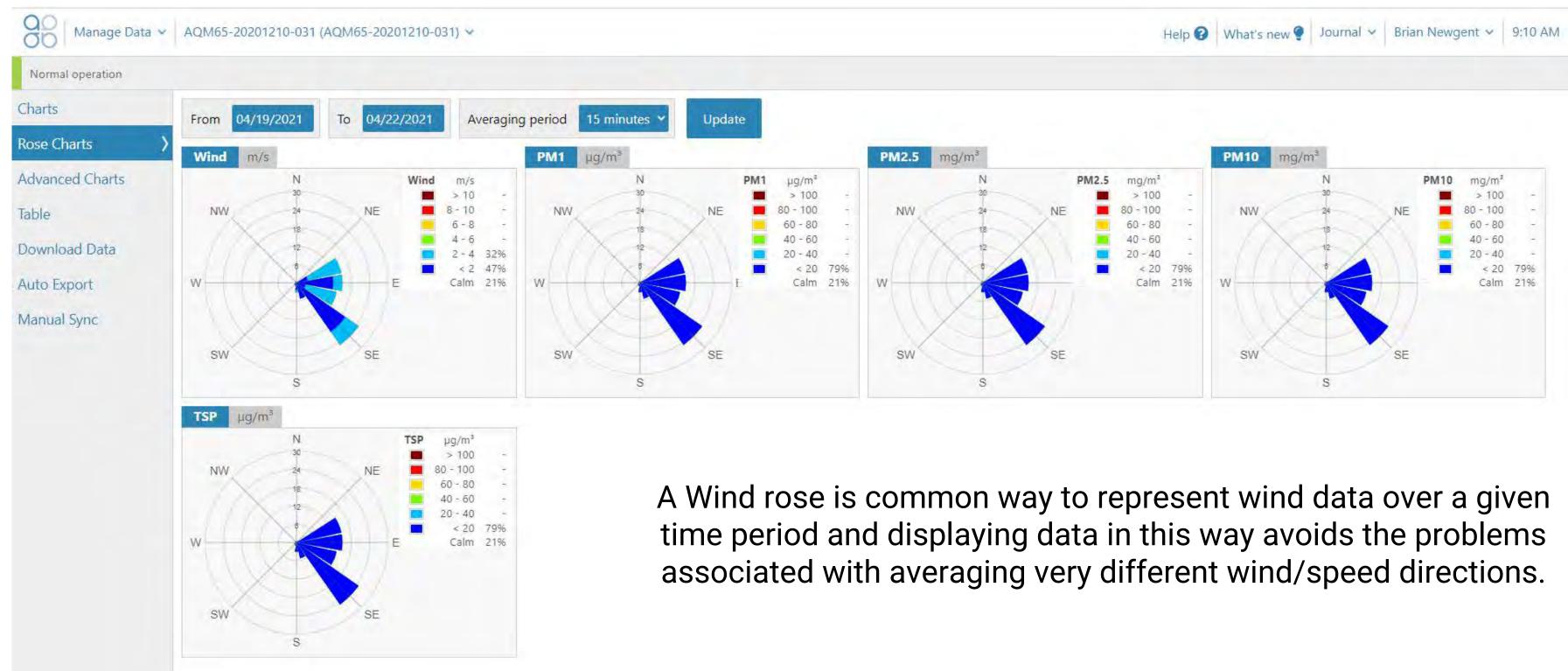
Data Visualization and Software Tools to Maximize Performance and Sharpen Accuracy

CleanAir Workshops

Dust Monitoring Compliance

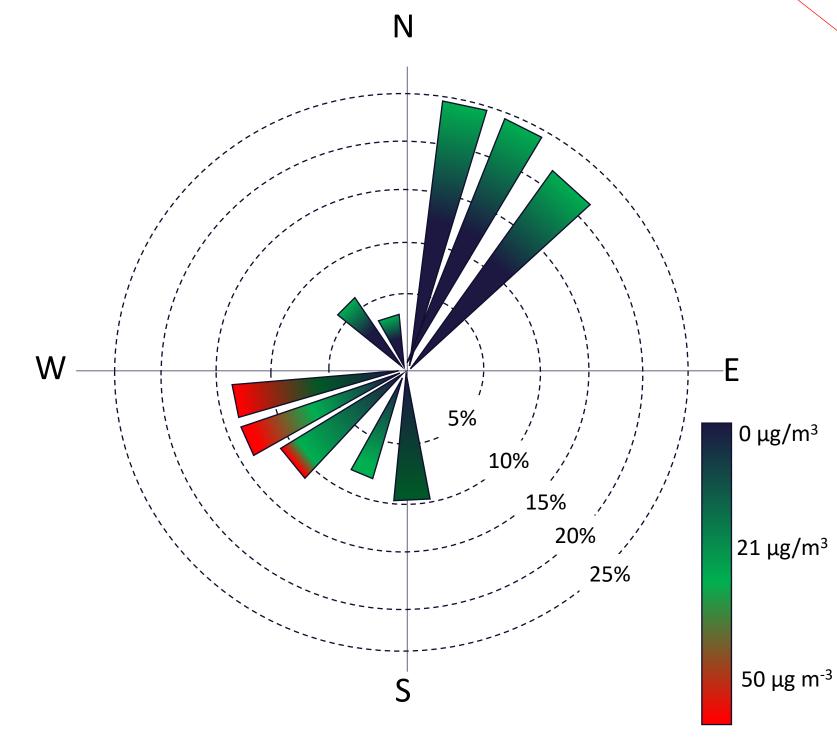
Data Visualization Tools

CleanAir.


Dust Monitoring Compliance

CleanAir Workshops

Aeroqual Cloud Pollution Charts



CleanAir Workshops **Dust Monitoring Compliance**

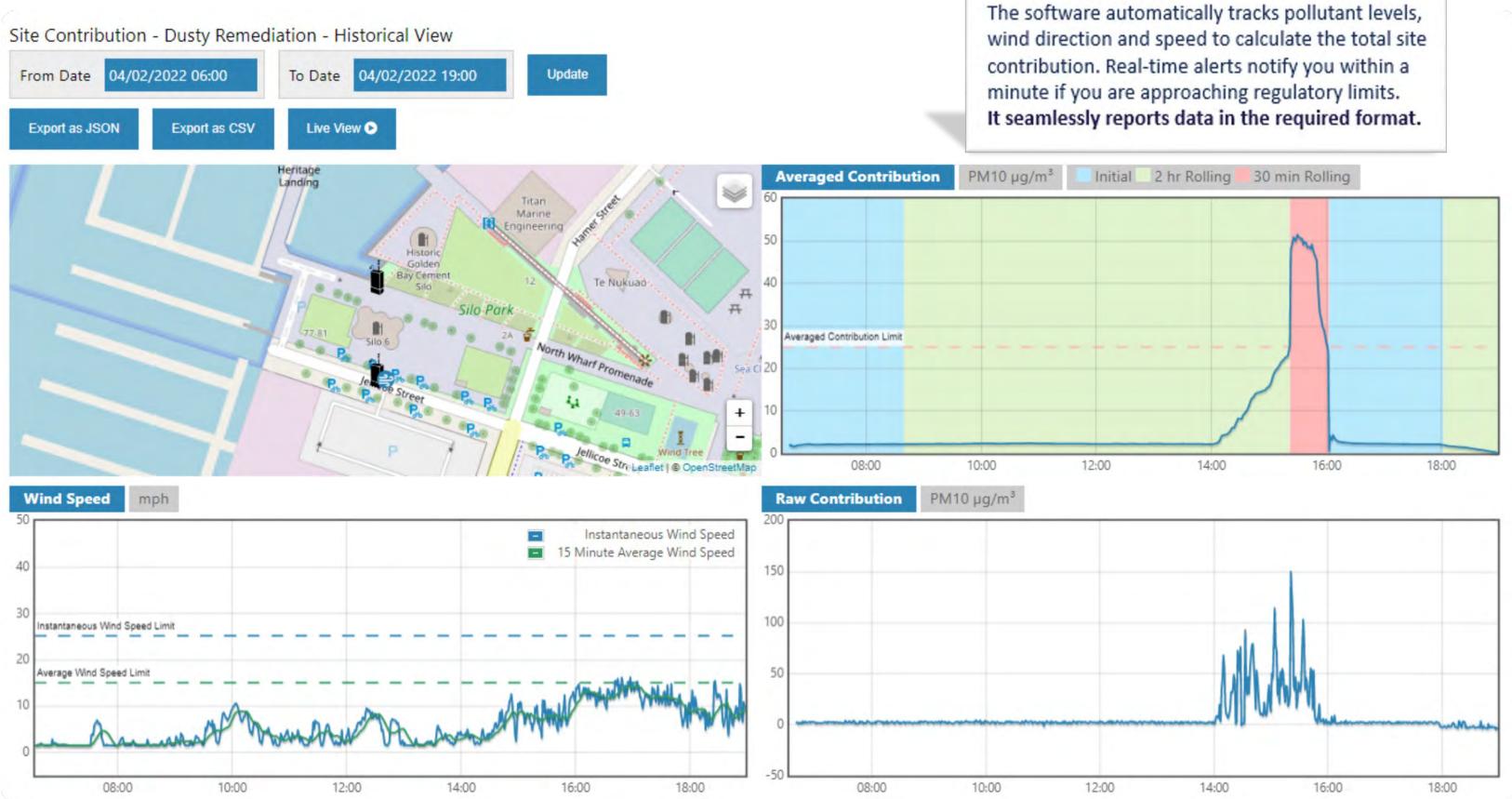
Rose Chart | PM Contribution

Dust Monitor location with additional wind speed/direction sensor, located on the boundary between residential area and power station.

station.

Dust Monitoring Compliance

cleanair.com/workshops/dust


Coal fired power

Residential area

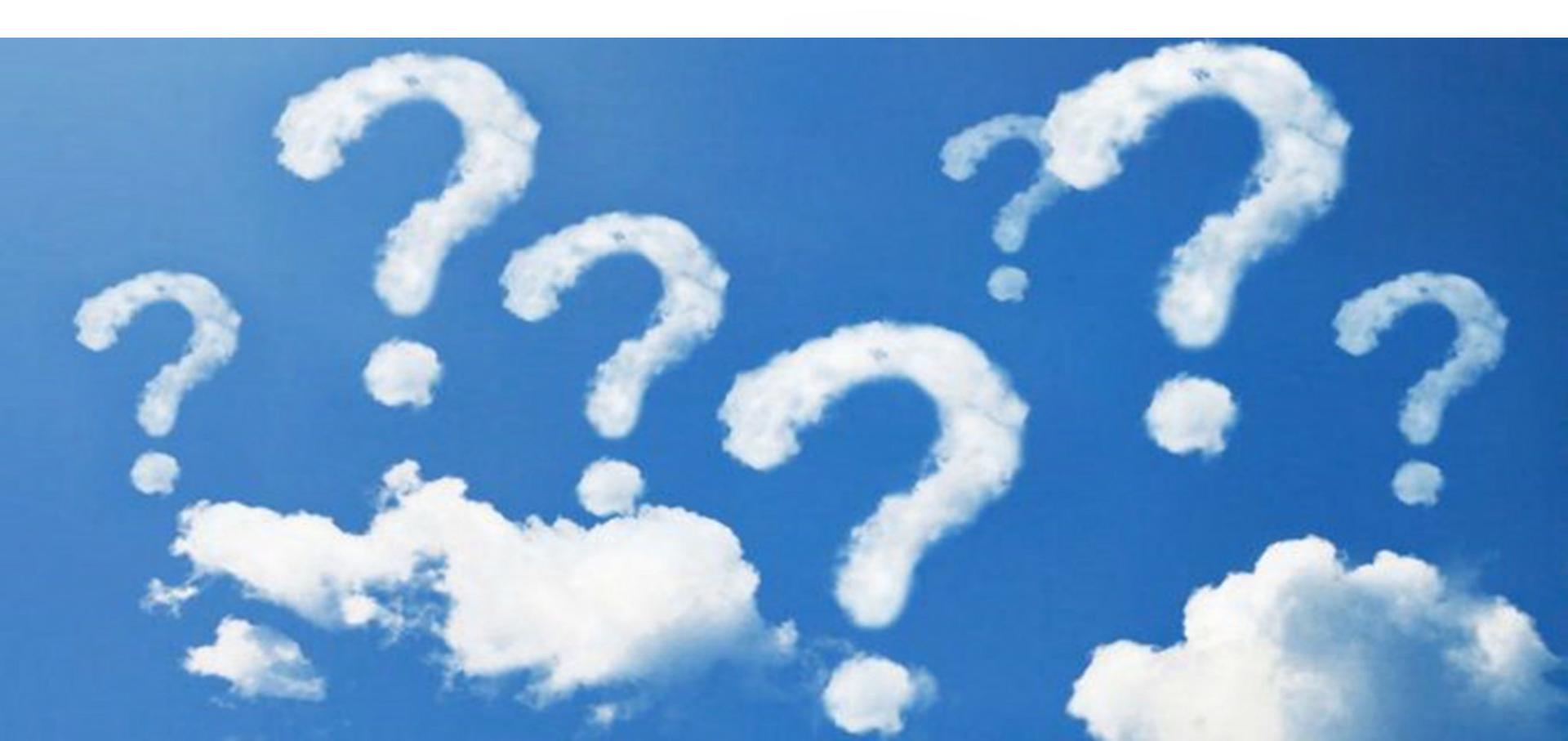
The pollution rose says that most of wind comes from the **NorthEast** and when it does **PM values are low**. But when wind blows from the SouthWest PM values are high.

Site Contribution

CleanAir Workshops

Dust Monitoring Compliance

Data Outcome...



CleanAir Workshops

Dust Monitoring Compliance

Questions...

CleanAir Workshops Dust Monitoring Compliance

Dust Monitoring Compliance Thursday, September 14, 2023

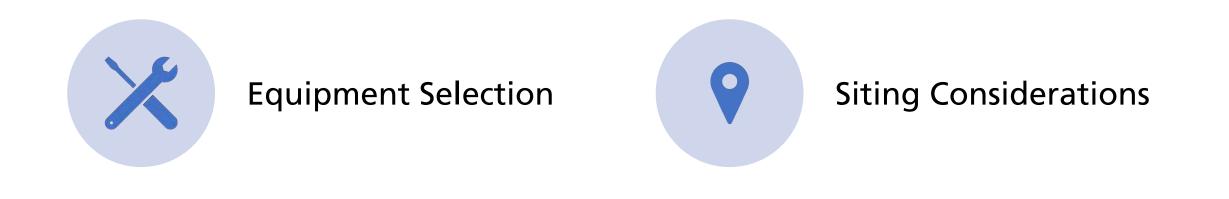
Morning Program

9:00	Welcome	10:45	In
9:05	Overview and Updates of CDPH Regulatory and		Δ
	Community Air Monitoring Approaches Michael Enos, CDPH	11:10	Ne
9:40	Regional and National Regulatory Overview Brian Newgent and Claire Amin, Aeroqual	11:35	То
10:05	Monitoring Program Design and Data Analysis		
	Considerations Volker Schmid, CleanAir	12:00	LU
10:30	BREAK		

CleanAir Workshops

tro to Site Contribution Analysis and Aeroqual's Site Contribution Tool Connor Porter, Aeroqual **ew Developments for Special Applications** Don Allen and Volker Schmid, CleanAir **op 10 Support Questions** Don Allen, CleanAir, and Connor Porter, Aeroqual **JNCH**

Monitoring Program Design and Data Analysis Considerations


September 14, 2023

CleanAir Workshops

Dust Monitoring Compliance

Quality Assurance & **Performance Criteria** <u>u.</u>

Data Management and Analysis

CleanAir Engineering Inc. www.cleanair.com

Dust Monitoring Compliance

CleanAir Workshops

cleanair.com/workshops/dust

Documentation

www.cleanair.com CleanAir Engineering Inc.

CleanAir Workshops

Dust Monitoring Compliance

CleanAir Engineering Inc. www.cleanair.com CleanAir Workshops

Dust Monitoring Compliance

Criteria Pollutants

List of Designated Reference and Equivalent Methods, June 15, 2023 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY **CENTER FOR ENVIRONMENTAL MEASUREMENTS & MODELING** AIR METHODS & CHARACTERIZATION DIVISION (MD-D205-03) Environmental Protection Agency Research Triangle Park, NC 27711 Rese LIST OF DESIGNATED REFERENCE AND EQUIVALENT MET

Issue Date: June 15, 2023

(www.epa.gov/ttn/amtic/criteria.html)

www.cleanair.com CleanAir Engineering Inc.

Dust Monitoring Compliance

CleanAir Workshops

Page 1	
Office of earch and Development	
THODS	

PM10 – FRM & FEM

List of Designated Reference and Equivalent Methods, June 15, 2023 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY **CENTER FOR ENVIRONMENTAL MEASUREMENTS & MODELING** AIR METHODS & CHARACTERIZATION DIVISION (MD-D205-03) Environmental Protection Agency Research Triangle Park, NC 27711

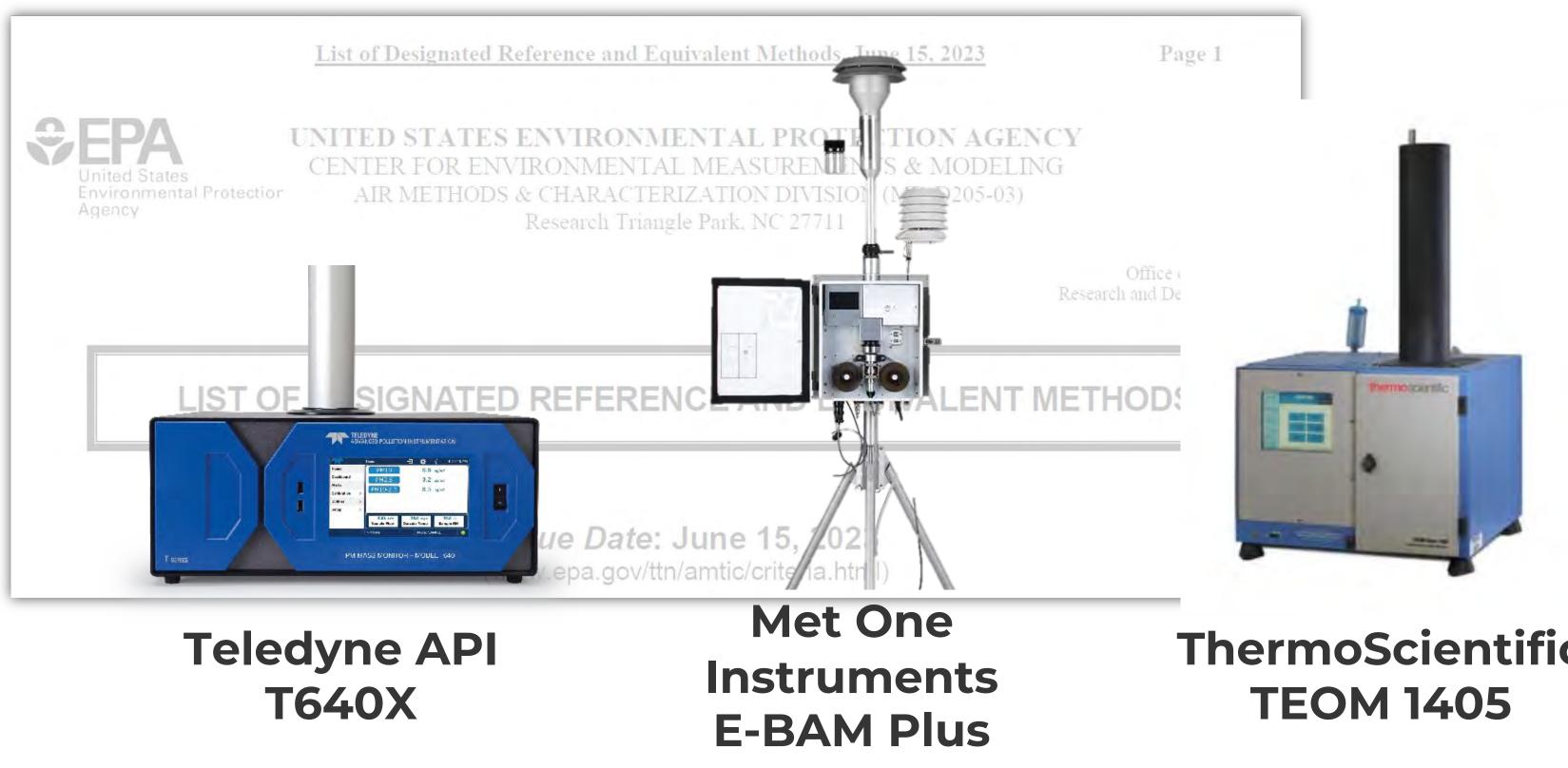
LIST OF DESIGNATED REFERENCE AND EQUIVALENT MET

Issue Date: June 15, 2023

(www.epa.gov/ttn/amtic/criteria.html)

www.cleanair.com CleanAir Engineering Inc.

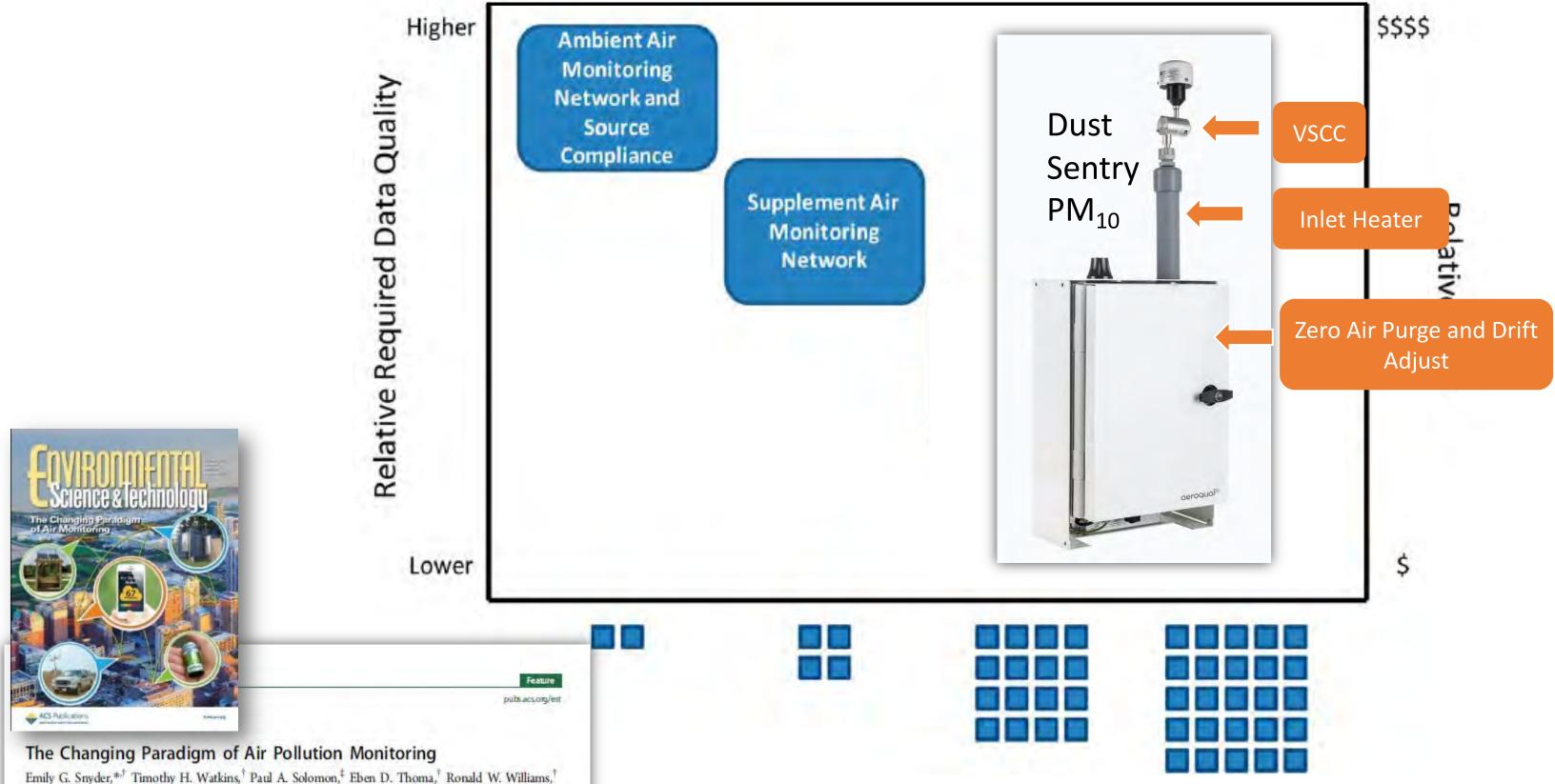
Dust Monitoring Compliance


CleanAir Workshops

Page 1	
CY G	
Office of Research and Development	
ETHODS	

PM10 – FEM

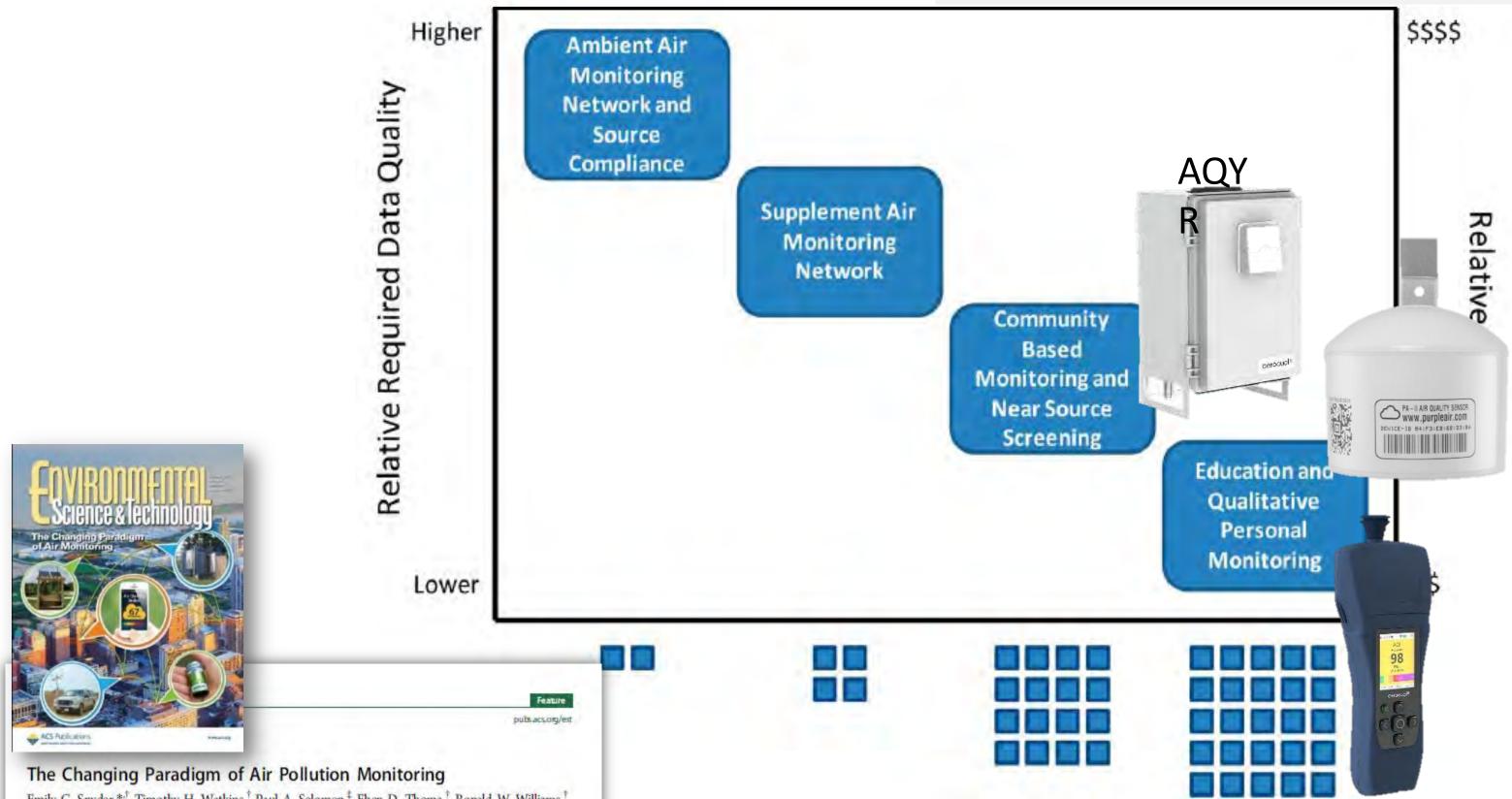
www.cleanair.com CleanAir Engineering Inc.


Dust Monitoring Compliance

CleanAir Workshops

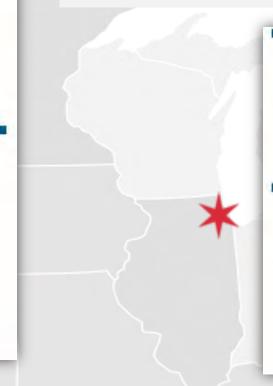
cleanair.com/workshops/dust

ThermoScientific



Emily G. Snyder,^{*,†} Timothy H. Watkins,[†] Paul A. Solomon,[‡] Eben D. Thoma,[†] Ronald W. Williams,[†] Gayle S. W. Hagler,[†] David Shelow,[§] David A. Hindin,^{||} Vasu J. Kilaru,[†] and Peter W. Preuss[⊥]

CleanAir Workshops **Dust Monitoring Compliance**



Emily G. Snyder,^{*,†} Timothy H. Watkins,[†] Paul A. Solomon,[‡] Eben D. Thoma,[†] Ronald W. Williams,[†] Gayle S. W. Hagler,[†] David Shelow,[§] David A. Hindin,^{||} Vasu J. Kilaru,[†] and Peter W. Preuss[⊥]

Dust Monitoring Compliance

CleanAir Workshops

Control of Emissions from Handling and Storing Bulk Materials

CITY OF CHICAGO

RULES

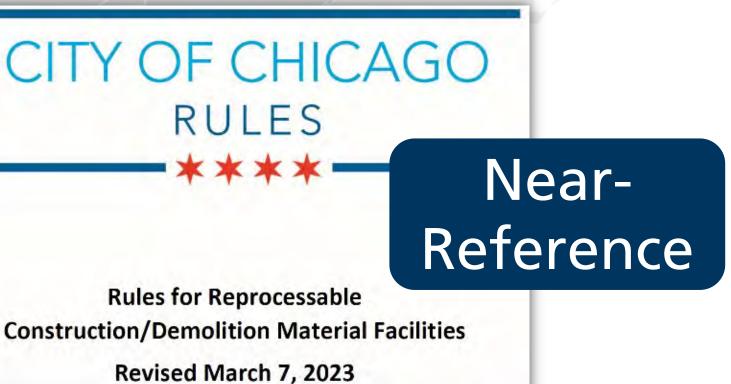
Effective January 25, 2019

FEM

Near-Reference

DEMOLITION BY IMPLOSION

Dust Monitoring Compliance


cleanair.com/workshops/dust

CleanAir Workshops

CITY OF CHICAGO RULES Near-Reference

Rules for Large Recycling Facilities

Effective June 5, 2020

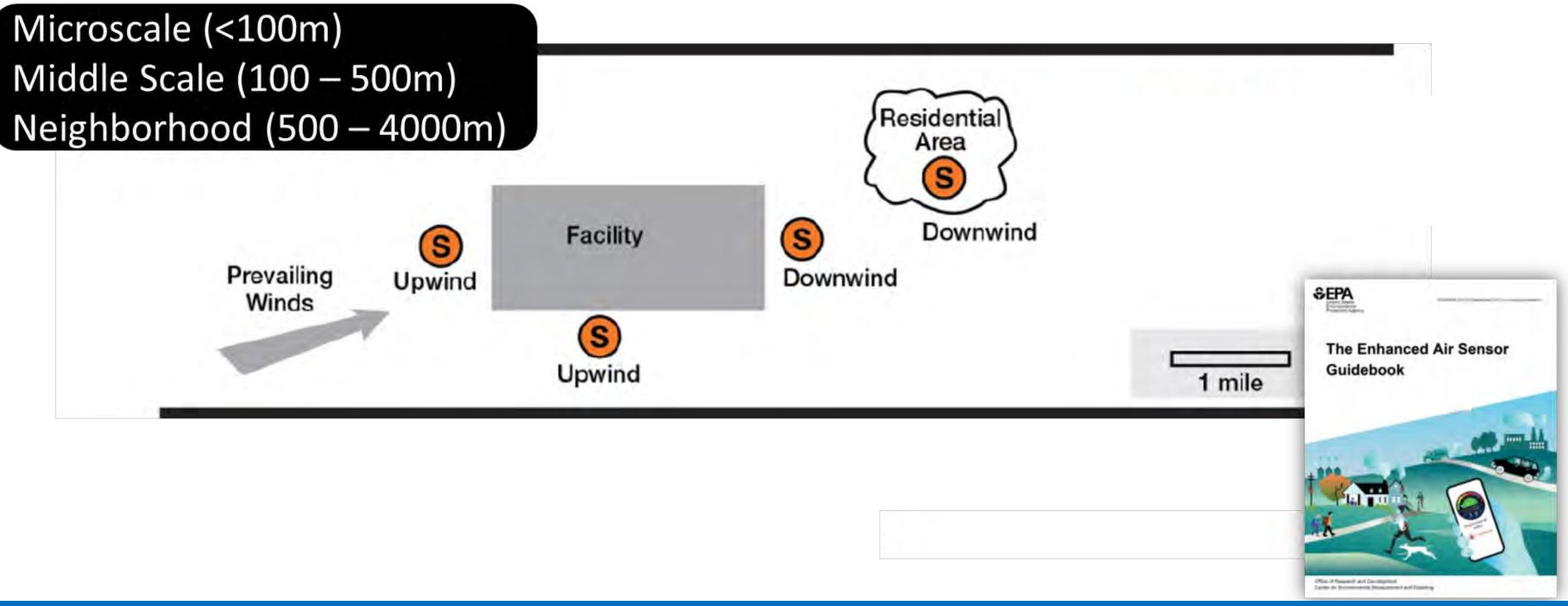
CleanAir Engineering Inc. www.cleanair.com CleanAir Workshops

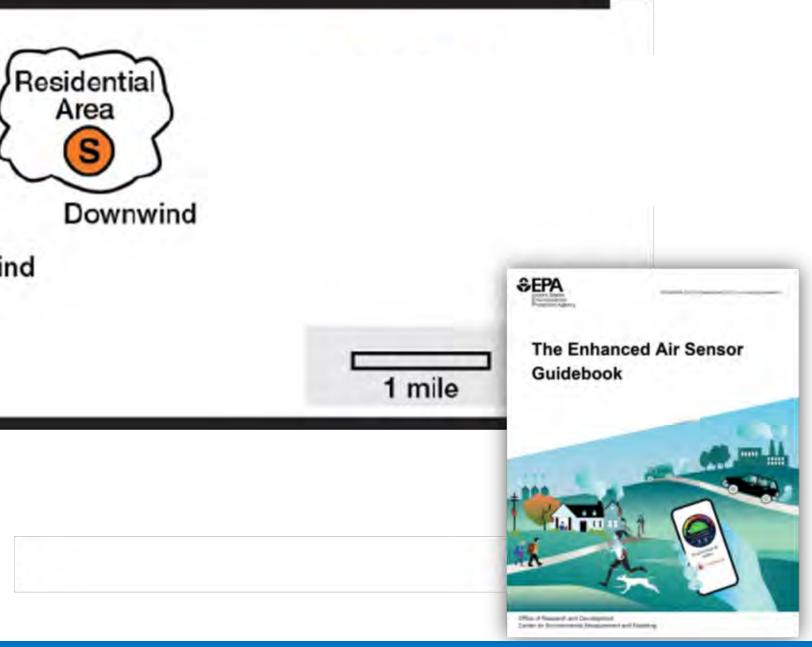
Dust Monitoring Compliance

MAKE SURE THAT THE SPATIAL SCALE OF THE AIR PARCEL THAT IS MEASURED BY THE EQUIPMENT MATCHES YOUR MONITORING OBJECTIVE

Microscale (<100m)	
Downwind S	S Downwind
S Upwind Prevailing Winds	S Downwind
Background	

CleanAir Engineering Inc. | www.cleanair.com


CleanAir Workshops


Dust Monitoring Compliance

MEASUREMENT SCALES OF GREATEST INTEREST FOR SOURCE IMPACT ASSESSMENT AND CONTRIBUTION ANALYSIS

www.cleanair.com CleanAir Engineering Inc.

Dust Monitoring Compliance

CleanAir Workshops

Siting Recommendations

- Follow EPA siting guidance as much as you can (distance from obstructions, roadways, probe inlet height, etc.)
- Final siting is almost always a compromise
- Evaluate the impact and whether the measurement lacksquarestill meets the monitoring objective.
- Document the final locations and deviations from guidelines.

www.cleanair.com CleanAir Engineering Inc.

CleanAir Workshops **Dust Monitoring Compliance** cleanair.com/workshops/dust

Meteorological Station Siting Is Important

- Source identification and contribution analysis relies on accurate and representative meteorological data
- Tower height requirements
- Distance from obstructions
- Surface properties
- Follow siting guidelines as much as possible and document any deviations and their potential impact

Quality Assurance Handbook for Air Pollution Measurement Systems

Volume IV: Meteorological Measurements Version 2.0 (Final)

> www.cleanair.com CleanAir Engineering Inc.

CleanAir Workshops

Dust Monitoring Compliance cleanair.com/workshops/dust

Equipment Selection

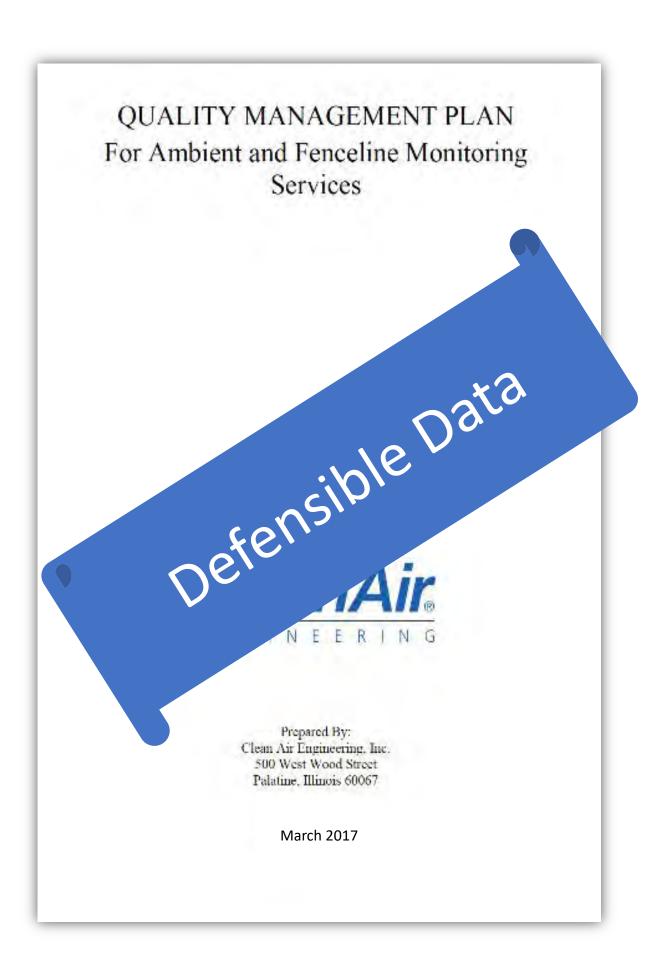
Siting Considerations

Quality Assurance & Performance Criteria

ılı.

Data Management and Analysis

www.cleanair.com CleanAir Engineering Inc.


Dust Monitoring Compliance

cleanair.com/workshops/dust

Documentation

- Quality Assurance Project Plan / Monitoring Plan
- **Develop Standard Operating Procedures / Designated Forms**
- Document everything: if things are not lacksquaredocumented, they never happened.

CleanAir Workshops **Dust Monitoring Compliance** cleanair.com/workshops/dust

Equipment Selection

Siting Considerations

Quality Assurance & Performance Criteria

ılı.

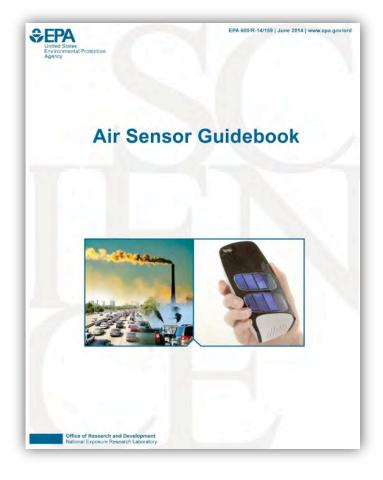
Data Management and Analysis

www.cleanair.com CleanAir Engineering Inc.

Dust Monitoring Compliance

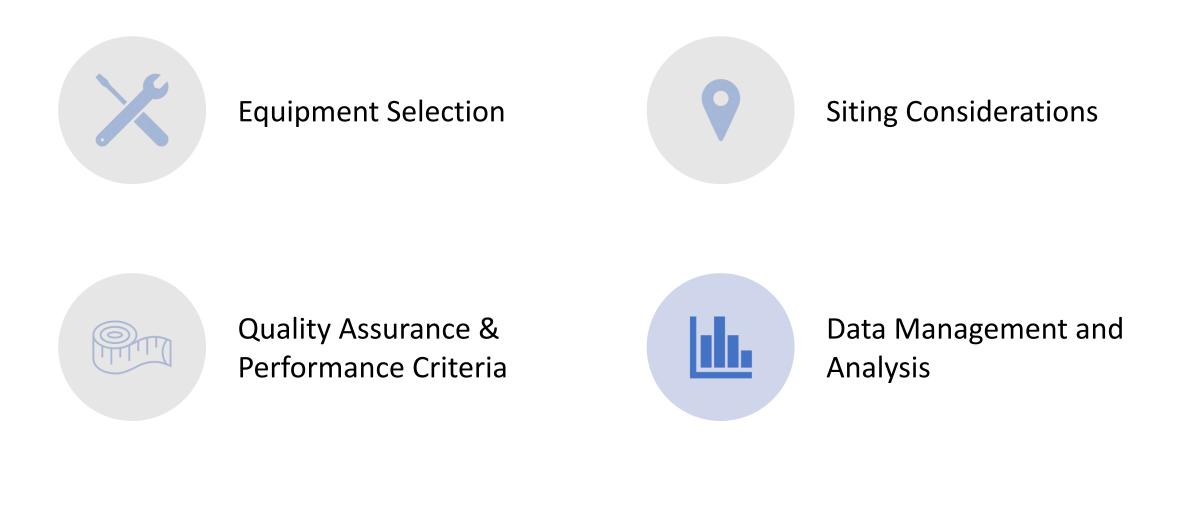
cleanair.com/workshops/dust

Documentation



Tier	Application Area	Pollutants	Precision and Bias Error	Data Completeness
I	Education and Information	All	<50%	≥50%
II	Hotspot Identification and Characterization	All	<30%	≥75%
III	Supplemental Monitoring	Criteria pollutants, Air Toxics (incl. VOCs)	<20%	≥80%
IV	Personal Exposure	All	<30%	≥80%
V	Regulatory Monitoring	O3, CO, SO2 NO2, PM2.5/10	<7% <10% <15% <10%	≥75%

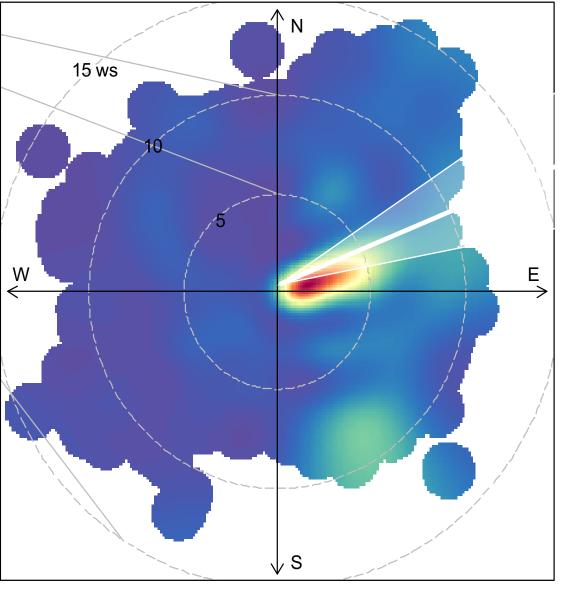
www.cleanair.com CleanAir Engineering Inc.


CleanAir Workshops

Dust Monitoring Compliance

Dust Monitoring Compliance

cleanair.com/workshops/dust



Documentation

http://davidcarslaw.github.io/openair/

CleanAir Engineering Inc. www.cleanair.com CleanAir Workshops

Dust Monitoring Compliance

cleanair.com/workshops/dust

Source Direction Indicator Plots

www.cleanair.com CleanAir Engineering Inc.

CleanAir Workshops

Equipment Selection

Siting Considerations

Quality Assurance & Performance Criteria

Data Management and Analysis

CleanAir Engineering Inc. www.cleanair.com

CleanAir Workshops **Dust Monitoring Compliance**

cleanair.com/workshops/dust

Documentation

Dust Monitoring Compliance Thursday, September 14, 2023

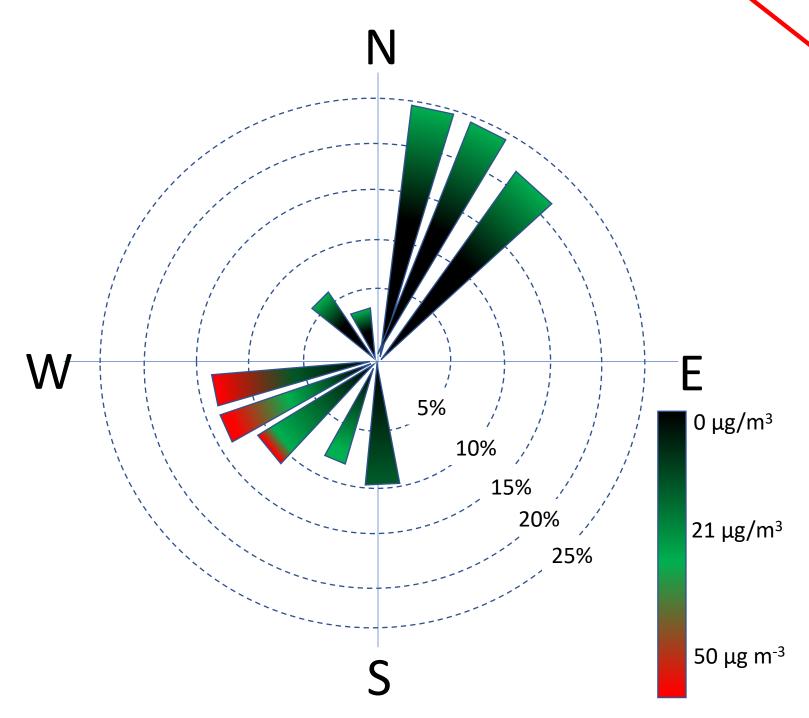
Morning Program

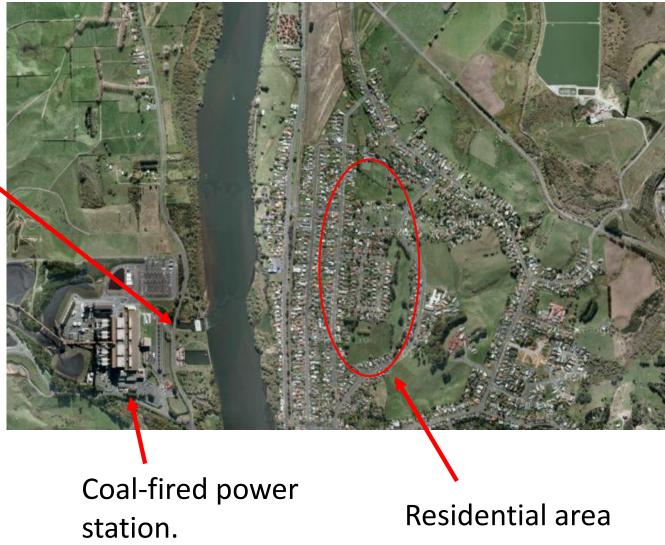
9:00	Welcome	10:45	In
9:05	Overview and Updates of CDPH Regulatory and		Δ
	Community Air Monitoring Approaches Michael Enos, CDPH	11:10	Ne
9:40	Regional and National Regulatory Overview Brian Newgent and Claire Amin, Aeroqual	11:35	То
10:05	Monitoring Program Design and Data Analysis		
	Considerations Volker Schmid, CleanAir	12:00	LU
10:30	BREAK		

CleanAir Workshops

tro to Site Contribution Analysis and Aeroqual's Site Contribution Tool Connor Porter, Aeroqual **ew Developments for Special Applications** Don Allen and Volker Schmid, CleanAir **op 10 Support Questions** Don Allen, CleanAir, and Connor Porter, Aeroqual **JNCH**

Site Contribution


What is it, What does it Solve; An Introduction and Analysis

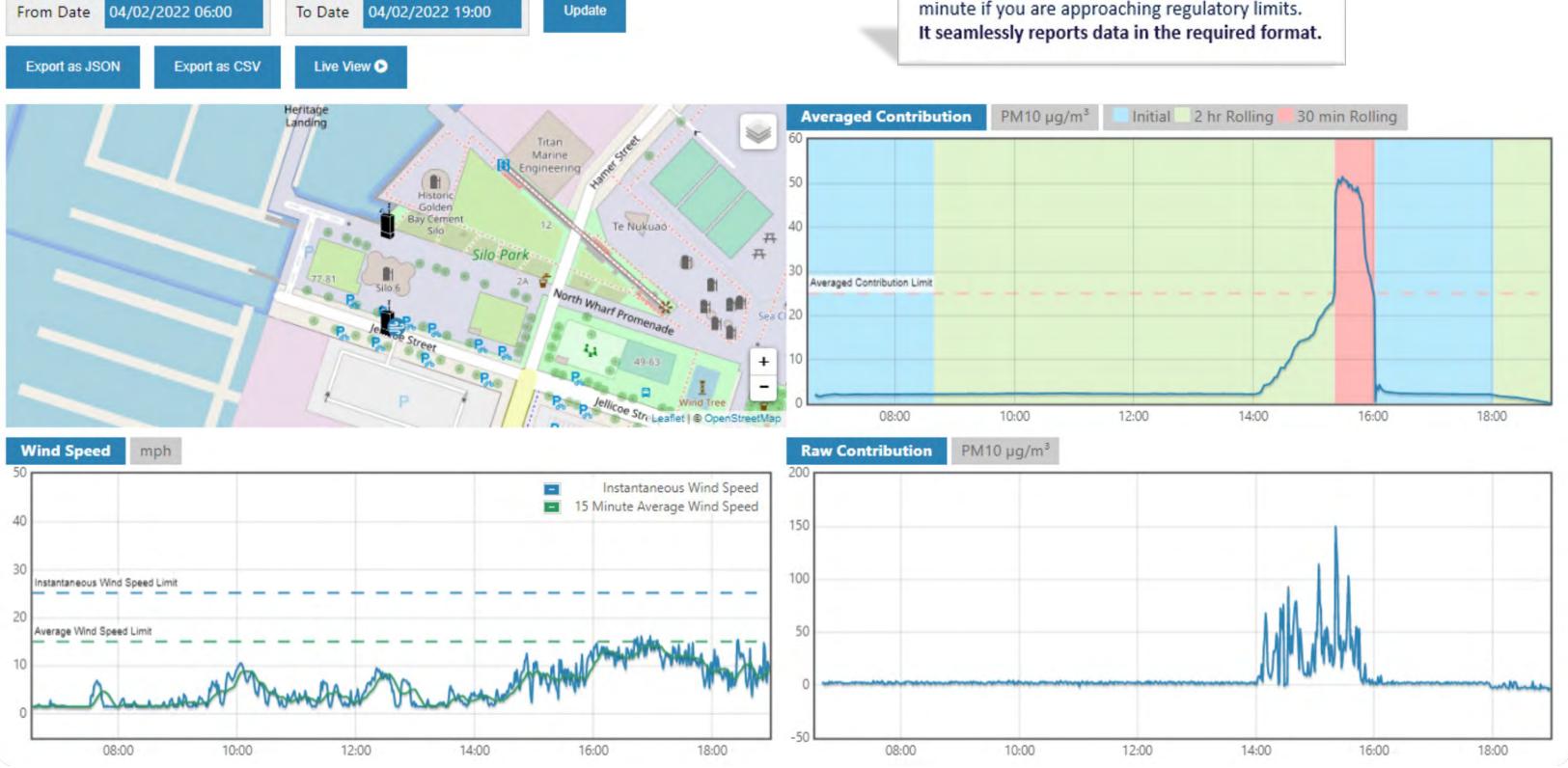

CleanAir Workshops

Dust Monitoring Compliance

Rose Chart | PM Contribution (CleanAir.

Dust Monitor location with additional wind speed/direction sensor, located on the boundary between residential area and power station.

The pollution rose says that most of wind comes from the **NorthEast** and when it does **PM values are low**. But when wind blows from the **Southwest PM values are high**.

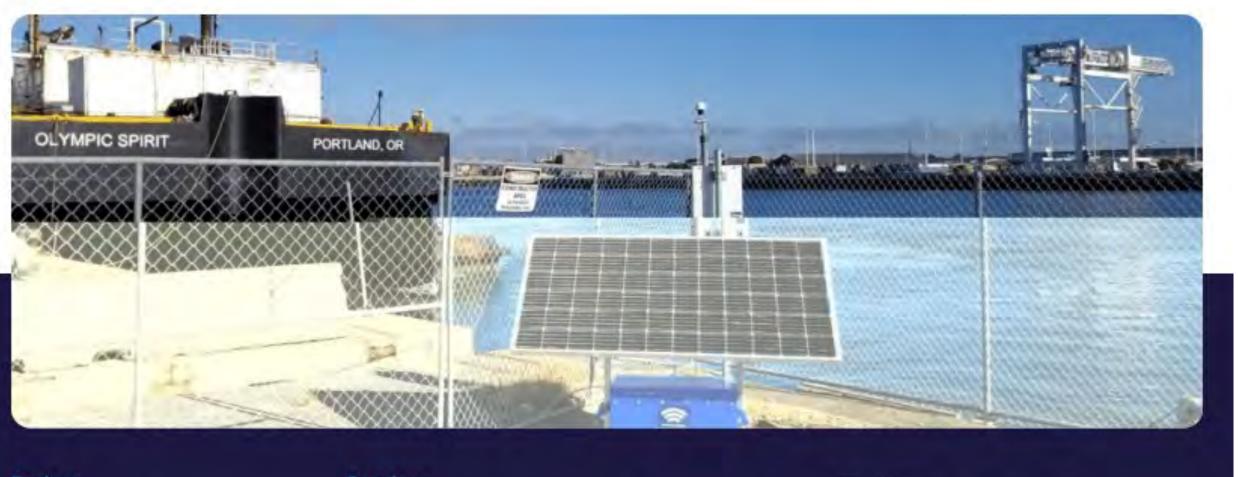

Dust Monitoring Compliance

Site Contribution

Site Contribution - Dusty Remediation - Historical View

The software automatically tracks pollutant levels, wind direction and speed to calculate the total site contribution. Real-time alerts notify you within a minute if you are approaching regulatory limits. It seamlessly reports data in the required format.

CleanAir Workshops



Dust Monitoring Compliance

2019 Catellus / Vista Environmental Consultants

Transforming the former site of the US Navy's Alameda Fleet Industrial Supply Center

Project Alameda Point Redevelopment

Location Alameda, California, USA

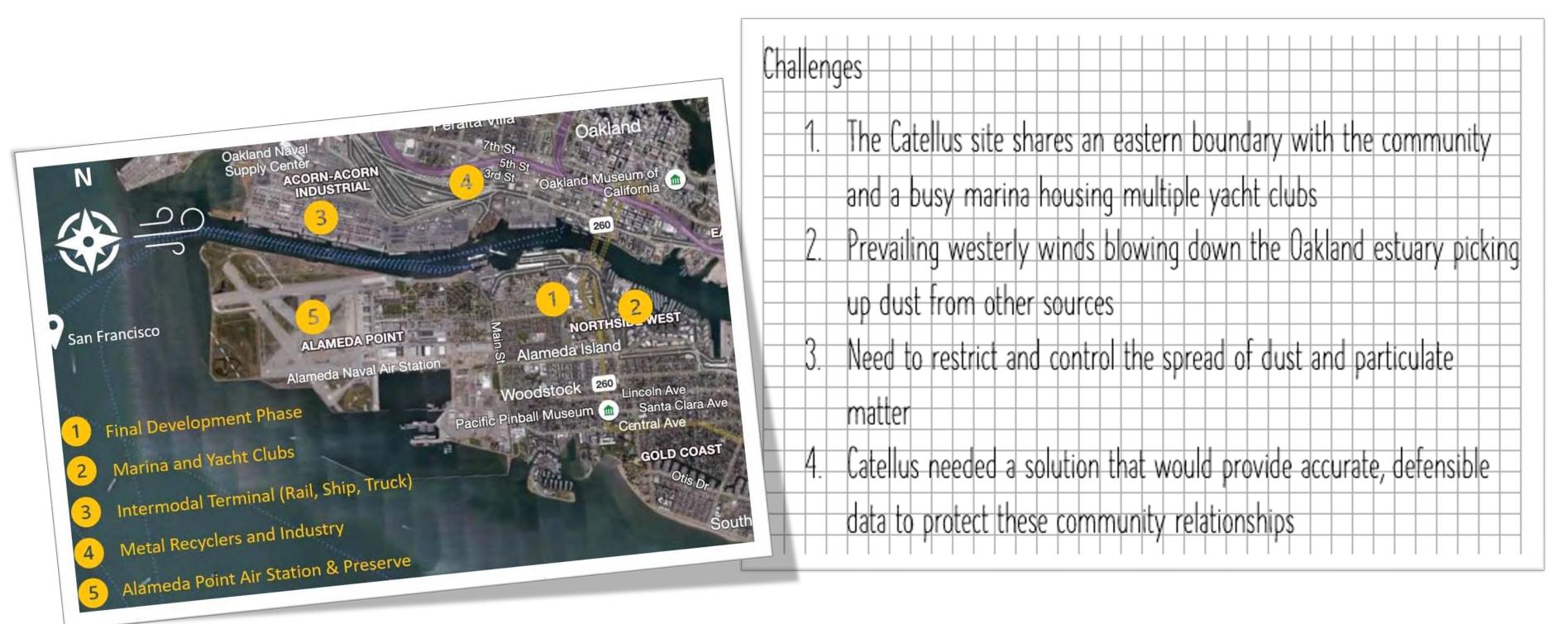
Date 2019 Services 3x Dust Sentry, Aeroqual Cloud Plus

Measurements PM₁₀, PM₂₅, wind and noise

Sector Remediation

Case Study

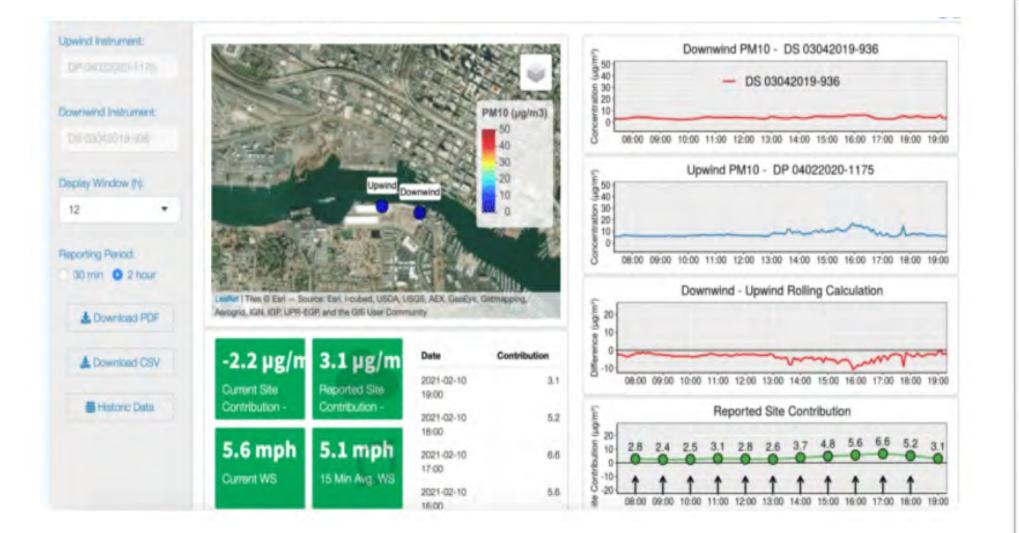
Being a Good Neighbor Requires Real-Time Alerts and Defensible Air-Quality Data CleanAir Workshops


Dust Monitoring Compliance

cleanair.com/workshops/dust

A leading national developer used integrated weather, noise, and particulate matter monitoring to produce credible air quality data and achieve regulatory compliance.

Understanding and Planning for Site Challenges



CleanAir Workshops

Dust Monitoring Compliance

The Solution

Integration of Hardware and Software

"The solution works really well, and it was valuable to be able to upload and download data remotely and to have a permanent record of it."

Chuck Bove Vista

Proactive Community Outreach

Aeroqual Cloud

Aeroqual Site Contribution

CleanAir Workshops

Dust Monitoring Compliance

cleanair.com/workshops/dust

 Explaining the development vision, their activities, and their dust mitigation plan

Three Aeroqual Dust Sentry PM10 w/MET

 One Fully Integrated Meteorological Station One Upwind Boundary, one on the Downwind Boundary, and one fixed monitoring station adjacent to the Sensitive marina area

 Exceedance alerts were configured for PM and Wind Speeds

 Calculated the amount of PM10 dust moving onto the site at the west boundary and how much was moving off the east boundary, showing the site's contribution

 Data was combined with wind roses to prove the low impact the site had on dust creation in the community

The Outcome

Reliable, Accurate, Actionable and Defensible Information Builds Trust, and Reduces Claims

Achieved Regulatory Compliance

- > 100% compliance with air ordinance of $PM10 < 75 \mu g/m3$
- \blacktriangleright Nuisance dust below 20 µg/m3

Built Community Trust

Community meetings previously disrupted by accusations of, "the dust was terrible yesterday," were quickly calmed by sharing reports

Proved Responsibility

- Catellus was able to prove to a local business owner that the metal recycler and railways to the northwest were responsible for metal dust in their paint
- > Over \$60,000 saved in 2 months

Dust Monitoring Compliance

CleanAir Workshops

cleanair.com/workshops/dust

"Everything that the equipment promised was delivered," says Bove. "We have not had any issues or problems with the monitors, they have been reliable and really haven't missed a step."

- Chuck Bove
- Principal and CEO at Vista

What is Site Contribution?

Understanding how it came about, what it solves

• How'd it come about?

Rule 1466 (California)

- The purpose of Rule 1466 is to minimize off-site fugitive dust emissions from earthmoving activities at sites containing specific toxic air contaminants by establishing dust control measures.

- https://www.aqmd.gov/home/rules-compliance/compliance/rule-1466

DER-10 (State of New York)

- DER-10 provides an overview of the site investigation and remediation process for DEC's remedial programs administered by the Division of Environmental Remediation (DER).

- https://www.dec.ny.gov/regulations/67386.html

CleanAir Workshops

Dust Monitoring Compliance

What Does it Solve?

What's the value-add?

- Provides Defensible Data, and Resolves Accountability
- Saves you and your team countless hours of charting and data digestion.
- Provides automated alerts when calculated values reach certain thresholds.
- Collates data for you so you don't have to!

Dust Monitoring Compliance

CleanAir Workshops

							Project Stoolie - Remediation			
						111	Report	Period		
		ir Monitor	toring Report		F	om:		9/10/2023 00:00		
		All Monitor			T	To:		9/10/2023 23:59		
					P	M10 Action	Level:	150.0 µg/m ³		
					V	OC Action I	evel:	5.00 ppm		
Summary	Temp (°F)	Relative	Humidity (%)	Baron	neter (inHg)	Windsp	eed (mph)	Preva	iling wind direction	
	44.6-68	3	35-84	29	9.8-30.3	0	13.4		SW	
onitoring S	ummary		PM10 (µg/r	m ³)	Time	1	VOC (pp	m)	Time	
	vg.) - 9/10/20	023	0.0	-	00:11		-0.00		00:04	
And the second sec	vg.) - 9/10/2		15.5		11:32		0.00		00:00	
		USJ Z/2R	West Side - Ei	ntrance	Side 💊		lan USJ 2/2K USJ 2/2J	A	- Perilian templan	
		» •	West Side - Ei	ntrance			USJ 2/2J	272 (5 L @ Ope	enStreetMap contributo	
werage Co	ontribution	•	•	South	Side VOC	jalar	USJ 2/2J	ङा / / / at © Ope	nStreetMap contributo	
		Q (µg/m³)	•		Side VOC	jalar Average	USJ 2/2) E Leafle Contribu	s () et © Ope	inStreetMap contributo	
		Q (µg/m³)	•	South	Side VOC	jalar Average	USJ 2/2) E Leafle Contribu	s () et © Ope	nStreetMap contributo	
		Q (µg/m³)	eee (120 µg/m²)	South 36.00 27.00	voc	jalar Average	USJ 2/2) E Leafle Contribu	s () et © Ope	inStreetMap contributo	
		Q (µg/m³)	eee (120 µg/m²)	South 36.00 27.00	N Side VOC	jalar Average	USJ 2/2) E Leafle Contribu	s () et © Ope	inStreetMap contributo	
		Q (µg/m³)	eee (120 µg/m²)	South 36.00 27.00 18.00 9.00	voc	jalar Average	USJ 2/2) E Leafle Contribu	s () et © Ope	inStreetMap contributo	
		Q (µg/m³)	eee (120 µg/m²)	South 36.00 27.00	voc	jalar Average	USJ 2/2) E Leafle Contribu	s () et © Ope	inStreetMap contributo	
		Q (µg/m³)	eee (120 µg/m²)	South 36.00 27.00 18.00 9.00	Side VOC	jalar Average	USJ 2/2) E Leafle Contribu	s () et © Ope	inStreetMap contributo	
: d4647cd2-6		Q (µg/m ³) dea502ec3a	еее (120 µg/m²)	South 36.00 27.00 18.00 9.00 0.00 -9.00	Side VOC	jalar Average Alert 2a5	USJ 2/2) E Leafle Contribu	97 et © Ope 1tion (p 061-8e2b	enStreetMap contributo	

Getting Started

All the Prep Work

- Ensure There's a Unit That Has Wind Speed & Direction
- Plan it out
 - Where are the units going on site?
 - How many units?
 - Are there designated names for each location?
- Get Your Users Enabled
 - Send an e-mail with a list of e-mails of the users that will be using the Site Contribution tool
- What Contribution Type will you be using?
 - 1466, DER-10, Custom, Other?
 - Know the Averaging Period

CleanAir Workshops

Dust Monitoring Compliance

Creating the Contribution

Contribution Type

Display Units

µg/m³

1466 Site Contribution

Create Contribution

Contribution Type

-- Please select --

-- Please select --

1466 Site Contribution DER 10 Site Contribution

Custom Site Contribution

Decimal Places	
2	

Contribution Name

Measurement Data Source Options

Northside Monitoring Location (PM10 ^ Southside Monitoring Location (PM10

Wind Measurement Options

Northside Monitoring Location

Contribution Type

 \sim

 \sim

 \sim

 \mathbf{v}

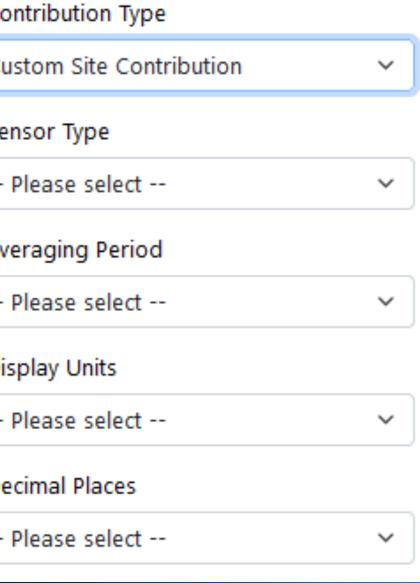
 \sim

DER 10 Site Contribution

Contribution Name

Measurement Data Source C

Northside Monitoring Locat Southside Monitoring Locati


Wind Measurement Options

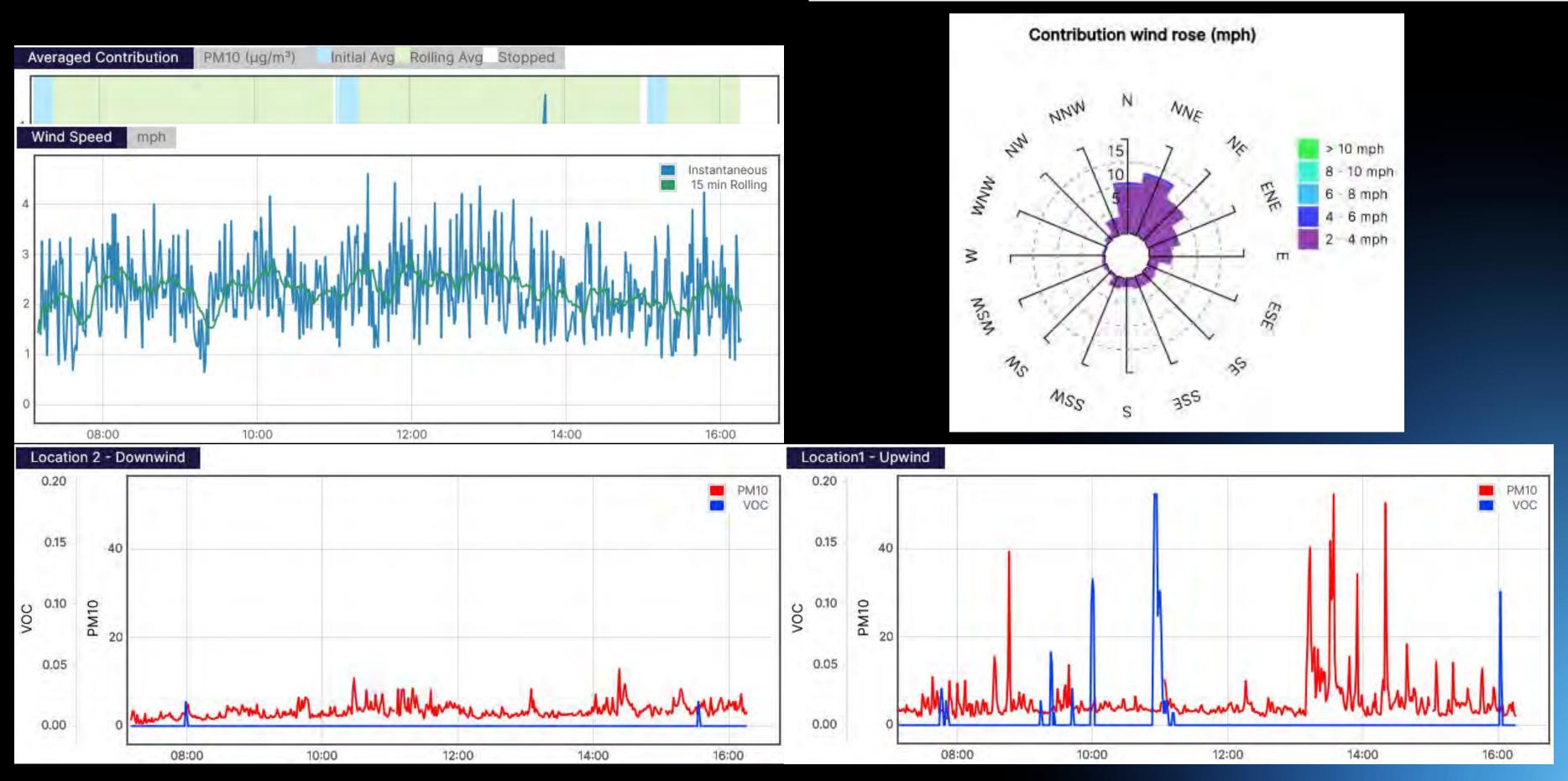
Northside Monitoring Location

Dust Monitoring Compliance

CleanAir Workshops

	Contribution Type
~	Custom Site Contri
	Sensor Type
	Please select
Options	Averaging Period
tion (PM10 Cition (PM10)	Please select
	Display Units
~	Please select
	Decimal Places
ion 🗸	Please select
	· · · · · · · · · · · · · · · · · · ·

Now It's Running



CleanAir Workshops

Dust Monitoring Compliance

Now It's Running

CleanAir Workshops Dust Monitoring Compliance

More Information About Site Contribution

- Blog Post https://www.aeroqual.com/blog/introducing-aeroqual-site-remediation
- 40 Minute Webinar https://www.aeroqual.com/events-webinars/introducing-aeroqualsite-contribution-webinar
- Support Docs https://support.aeroqual.com/Guide/Site+Contribution+tool/288

Dust Monitoring Compliance

CleanAir Workshops

Dust Monitoring Compliance Thursday, September 14, 2023

Morning Program

9:00	Welcome	10:45	In
9:05	Overview and Updates of CDPH Regulatory and		Δ
	Community Air Monitoring Approaches Michael Enos, CDPH	11:10	Ne
9:40	Regional and National Regulatory Overview Brian Newgent and Claire Amin, Aeroqual	11:35	То
10:05	Monitoring Program Design and Data Analysis		
	Considerations Volker Schmid, CleanAir	12:00	LU
10:30	BREAK		

CleanAir Workshops

tro to Site Contribution Analysis and Aeroqual's Site Contribution Tool Connor Porter, Aeroqual **ew Developments for Special Applications** Don Allen and Volker Schmid, CleanAir **op 10 Support Questions** Don Allen, CleanAir, and Connor Porter, Aeroqual **JNCH**

The Met-SCS

September 14, 2023

CleanAir Engineering Inc. www.cleanair.com

CleanAir Workshops

Dust Monitoring Compliance

AEROQUAL TOTAL VOC MONITOR

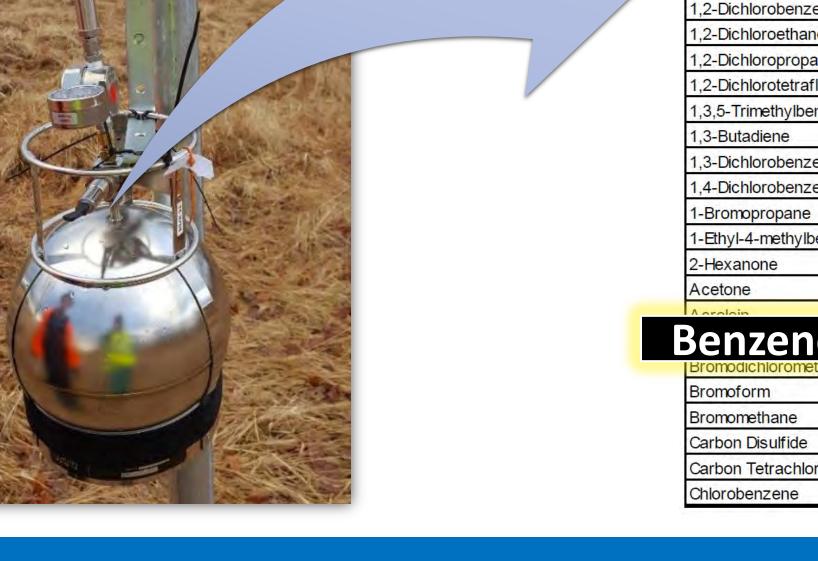
- Photoionization Detector (PID): sensitive, non-speciating detector.
- Does **NOT** respond to methane, ethane, or propane
- Responds to a large variety of inorganic and organic compounds including BTEX
- Lower Detection Limit: 1 ppb (Isobutylene)
- Automatic baseline correction to correct for cross interferences and minimize drift
- Actively pumped and supports conventional QA (bump test) with zero and span gas)

Dust Monitoring Compliance

CleanAir Workshops

VOC SPECIATION

X A PA


Background SUMMA-20

CleanAi

Table

TO-15 Analyte List (Toxic VOC)							
Analyte	CAS#	Analyte	CAS#				
1,1,1-Trichloroethane	71-55-6	Chloroethane	75-00-3				
1,1,2,2-Tetrachloroethane	79-34-5	Chloroethene (vinyl chloride)	75-01-4				
1,1,2-Trichloroethane	79-00-5	Chloroform	67-66-3				
1,1,2-Trichlorotrifluoroethane	76-13-1	Chloromethane	74-87-3				
1,1-Dichloroethane	75-34-3	cis-1,2-Dichloroethene	156-59-2				
1,1-Dichloroethene	75-35-4	cis-1,3-Dichloropropene	10061-01-5				
1,2,4-Trichlorobenzene	120-82-1	Cyclohexane	110-82-7				
1,2,4-Trimethylbenzene	95-63-6	Dibromochloromethane	124-48-1				
1,2-Dibromoethane	106-93-4	Dichlorodifluoromethane	75-71-8				
1,2-Dichlorobenzene	95-50-1	Ethylbenzene	100-41-4				
1,2-Dichloroethane	107-06-2	Hexachlorobutadiene	87-68-3				
1,2-Dichloropropane	78-87-5	m/p-Xylene	108-38-3				
1,2-Dichlorotetrafluoroethane	76-14-2	MEK	78-93-3				
1,3,5-Trimethylbenzene	108-67-8	Methyl Tert-Butyl Ether	163				
1,3-Butadiene	106-99-0	Methylene Chloride	75				
1,3-Dichlorobenzene	541-73-1	MIBK	10				
1,4-Dichlorobenzene	106-46-7	n-Heptane	14				
1-Bromopropane	106-94-5	n-Hexane	11				
1-Ethyl-4-methylbenzene	622-96-8	o-Xylene	98				
2-Hexanone	591-78-6	Propene	11				
Acetone	67-64-1	Styrene	10 D				
Acroloin	107-02-8	Tetrachloroethene	12 Con				
Senzene 🔜	71-43-2	Tetrahydrofuran	10 AI				
Bromodichloromethane	75-27-4	Toluene	10				
Bromoform	75-25-2	trans-1,2-Dichloroethene	15				
Bromomethane	74-83-9	trans-1,3-Dichloropropene	100				
Carbon Disulfide	75-15-0	Trichloroethene	79				
Carbon Tetrachloride	56-23-5	Trichlorofluoromethane	75				
Chlorobenzene	108-90-7						

CleanAir Engineering Inc. www.cleanair.com CleanAir Workshops

Dust Monitoring Compliance

cleanair.com/workshops/dust

EPA/625/R-96/010b

Compendium of Methods for the Determination of **Toxic Organic Compounds** in Ambient Air

Second Edition

Compendium Method TO-15

Determination Of Volatile Organic ompounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/ Mass Spectrometry (GC/MS)

Center for Environmental Research Information Office of Research and Development U.S. Environmental Protection Agency

CleanAir Engineering Inc. | www.cleanair.com

CleanAir Workshops

Dust Monitoring Compliance

MET-SCS HIGHLIGHTS

- Powered via the Aeroqual host (12 VDC)
 Communication with host via connectAPI (Ethernet)
- Communication v cable)
- Custom trigger level based on PID value
- Allows for selection of various sampling durations: 5, 15, 30, 60 min (grab sampling)
- Protects from oversampling by monitoring Summa can vacuum
- Vacuum reading is fed back into the Aeroqual host for remote cloud-based monitoring of sampling progress and alarming

CleanAir Workshops

Dust Monitoring Compliance cleanair.com/workshops/dust

MET-SCS HIGHLIGHTS CONTINUED...

- Silco-treated stainless steel for the entire flow path
- Silco-treated stainless steel filter
- Silco-treated stainless steel latching valve (low power operation)

CleanAir Workshops **Dust Monitoring Compliance** cleanair.com/workshops/dust

 Vacuum sensor with 316SS diaphragm • OLED display and keypad for user interaction, run configuration, and guided can replacement

MET-SCS HIGHLIGHTS CONTINUED...

- Accommodates various can sizes including 1.4 L and 6 L Summa cans
- Connection via ¼ inch Swagelock fitting

www.cleanair.com CleanAir Engineering Inc.

CleanAir Workshops **Dust Monitoring Compliance** cleanair.com/workshops/dust

() CleanAir.

CleanAir BTU Span and Zero Gas Bump Test Unit

The CleanAir Engineering BTU performs automatic bump tests at user-defined time intervals and concentrations, using integrated span and zero gas disposable 6D or 8AL cylinders.

Housed in a durable, weather-proof enclosure, the BTU is engineered for use with various air monitors, in most applications requiring bump testing. After initial on-site setup, track the BTU's performance remotely and set custom alerts using Aeroqual Cloud.

- ✓ Available for Sale or Rent
- World-Class Technical Support from CleanAir
- Full Inspection on Every CleanAir Rental
- Equipment Repair and Calibration Services

TECHNICAL SPECIFICATIONS

TEST INTERVAL RANCE	15 min 72 hr. (User Defined)
SPAN GASES AVAILABLE	0.5, 1, and 25 ppm
GAS CYLINDER SIZE	6D or 8AL
MEASURING RANGE	0-30 ppm
RESOLUTION	0.01 ppm
FLOW RATE	100 cc
POWER	12VDC or Powered from Aeroqual Monitors
MOUNTING	Pole Mount or Free-Standing
TEMPERATURE RANGE	-10 °F to 105 °F
DIMENSIONS (DxWxH)	6" x 10" x 26"
WEIGHT	15 lb

Bump Test Module | Aeroqual Cloud

KEY FEATURES

- User-Defined run times
- User-Defined run intervals
- Can be powered from Aeroqual monitors

APPLICATIONS

- Fenceline Monitoring
- Regulatory Compliance
- Remote locations
- Budget-Conscious studies
- Long-Term installations

Related Products Available from CleanAir

Performance Beyond Measure, since 1972. Unparalleled technical support, equipment rental, sales and servicing in Chicago, Houston, Pittsburgh, and Marseille, France

www.cleanair.com info@cleanair.com 1-800-553-5511

© 2022 CleanAir Engineering

CleanAir Engineering Inc. www.cleanair.com

Dust Monitoring Compliance

cleanair.com/workshops/dust

CLEANAIR BTU

METHANE MONITORING

September 14, 2023

www.cleanair.com CleanAir Engineering Inc.

CleanAir Workshops

Dust Monitoring Compliance

- Responds to CH4 and other gases
- CH4 Range: 0-50 ppm
- Precision (1 min): 0.5 ppm

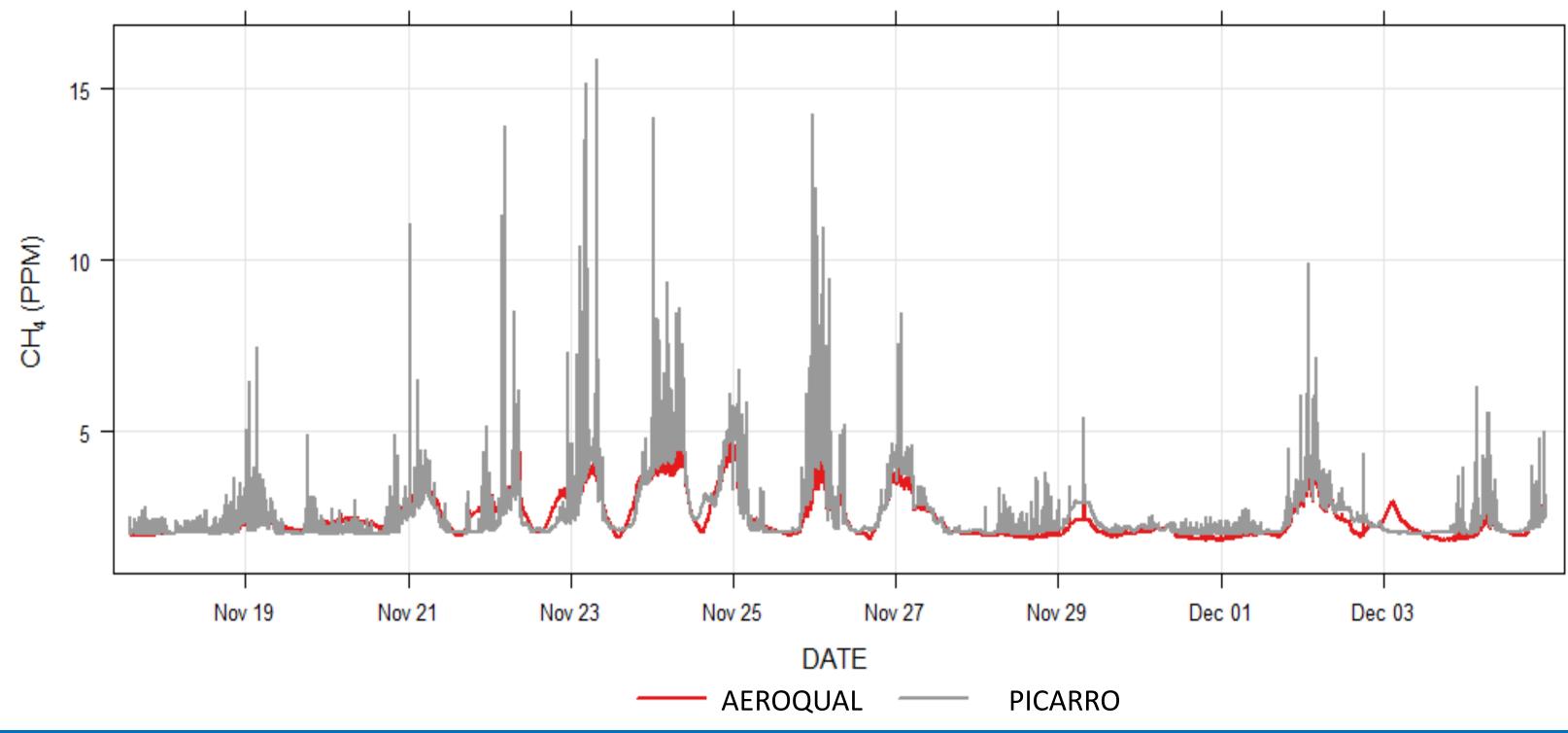
aeroqual

CleanAir Workshops

Dust Monitoring Compliance

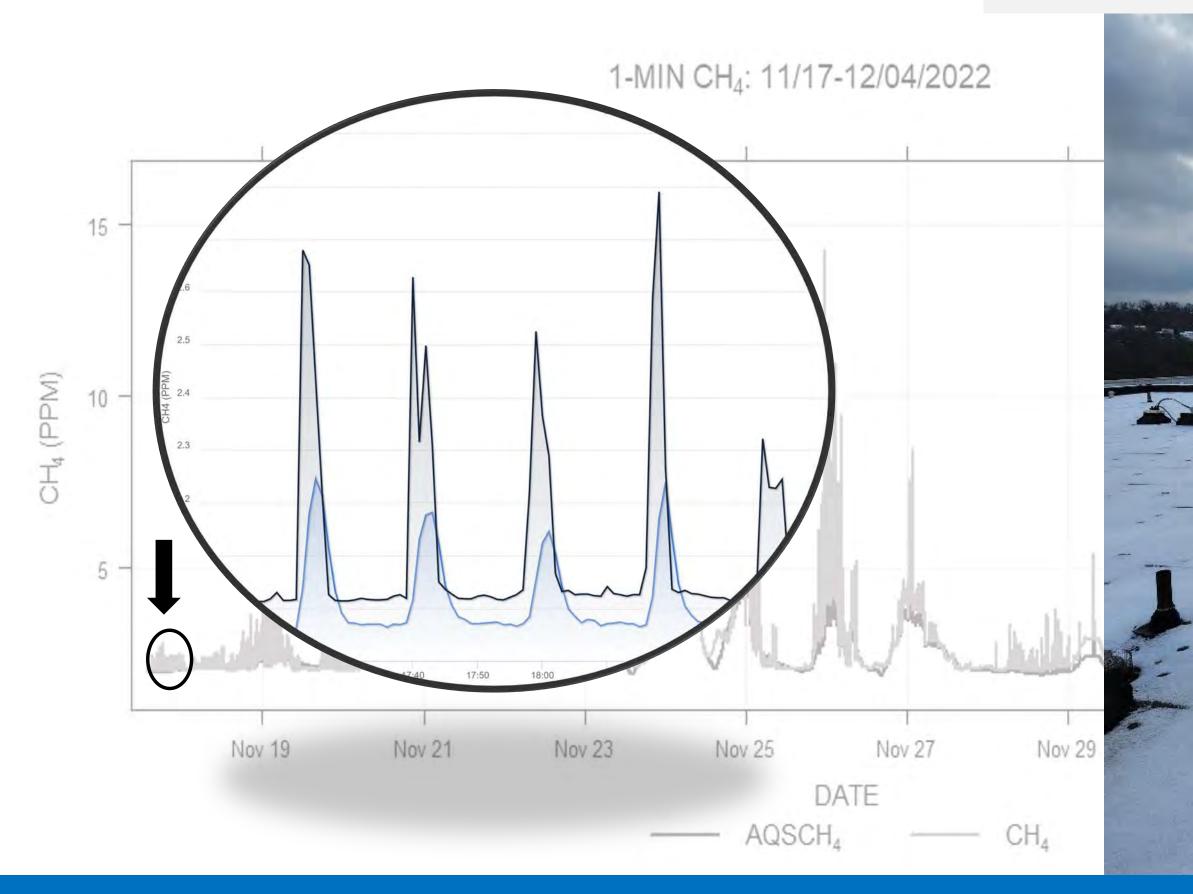
cleanair.com/workshops/dust

SMALL SENSOR SYSTEM


Dust Monitoring Compliance

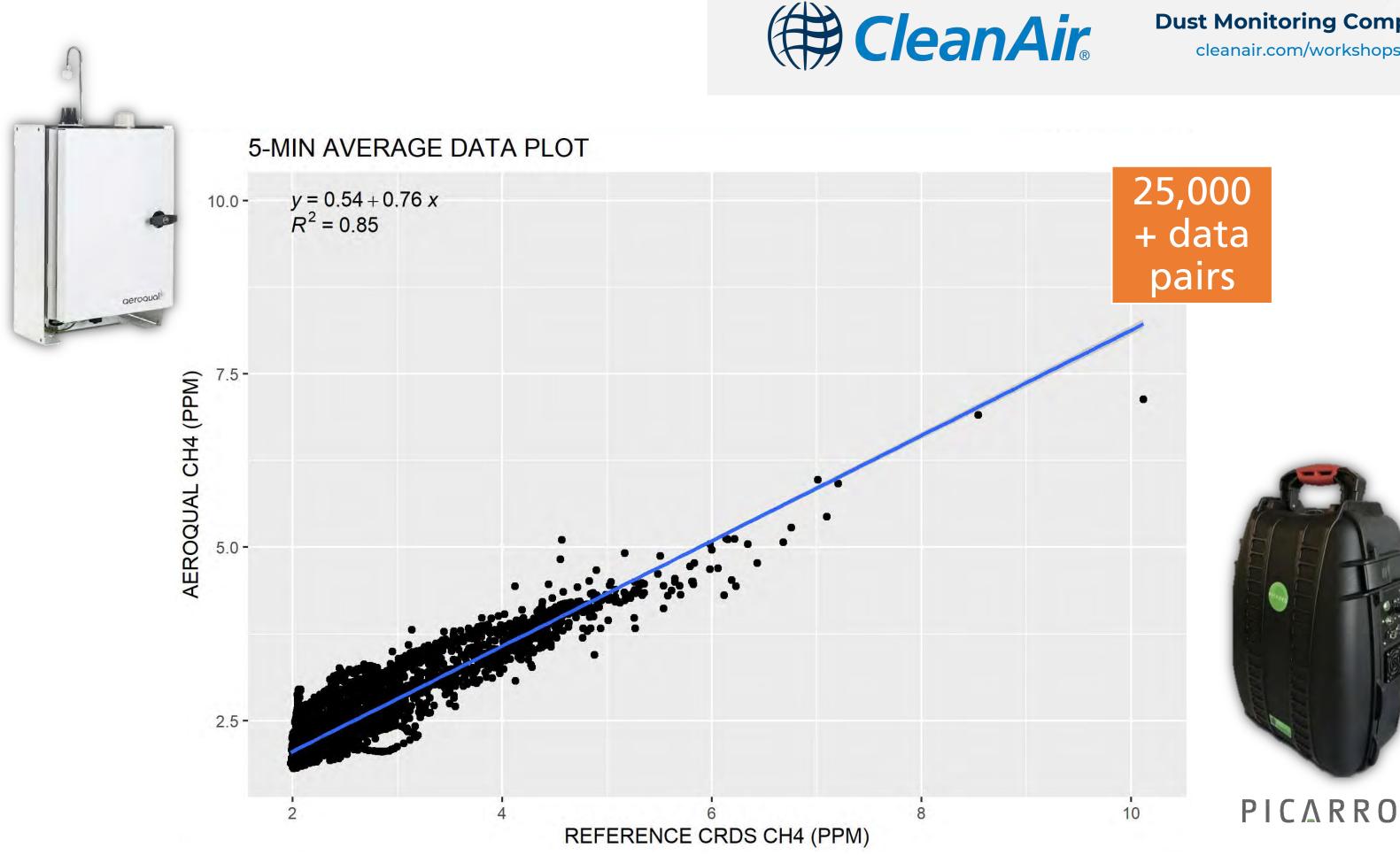
cleanair.com/workshops/dust

CH4 Range: 0-800 ppm Precision (1 sec): 3 ppb


1-MIN CH₄: 11/17-12/04/2022

CleanAir Engineering Inc. www.cleanair.com CleanAir Workshops

Dust Monitoring Compliance



CleanAir Engineering Inc. www.cleanair.com

Dust Monitoring Compliance

CleanAir Workshops

CleanAir Engineering Inc. www.cleanair.com CleanAir Workshops

Dust Monitoring Compliance

Dust Monitoring Compliance Thursday, September 14, 2023

Morning Program

9:00	Welcome	10:45	In
9:05	Overview and Updates of CDPH Regulatory and		Δ
	Community Air Monitoring Approaches Michael Enos, CDPH	11:10	Ne
9:40	Regional and National Regulatory Overview Brian Newgent and Claire Amin, Aeroqual	11:35	То
10:05	Monitoring Program Design and Data Analysis		
	Considerations Volker Schmid, CleanAir	12:00	LU
10:30	BREAK		

CleanAir Workshops

tro to Site Contribution Analysis and Aeroqual's Site Contribution Tool Connor Porter, Aeroqual **ew Developments for Special Applications** Don Allen and Volker Schmid, CleanAir **op 10 Support Questions** Don Allen, CleanAir, and Connor Porter, Aeroqual **JNCH**

Dust Monitoring Compliance Thursday, September 14, 2023

Morning Program

9:00	Welcome	10:45	In
9:05	Overview and Updates of CDPH Regulatory and		Δ
	Community Air Monitoring Approaches Michael Enos, CDPH	11:10	Ne
9:40	Regional and National Regulatory Overview Brian Newgent and Claire Amin, Aeroqual	11:35	То
10:05	Monitoring Program Design and Data Analysis		
	Considerations Volker Schmid, CleanAir	12:00	LU
10:30	BREAK		

CleanAir Workshops

tro to Site Contribution Analysis and Aeroqual's Site Contribution Tool Connor Porter, Aeroqual **ew Developments for Special Applications** Don Allen and Volker Schmid, CleanAir **op 10 Support Questions** Don Allen, CleanAir, and Connor Porter, Aeroqual **JNCH**

COMMON TECHNICAL QUESTIONS

Modules	Solar Setu
What modules can be used in AQS1.	Unit wat
	Suggeste
Calibration	Suggeste
Suggested Calibration gases	
Equipment needed	Duplicate
AirCal 1000	
O3 Generator	Autozero
Calibration gases with regulators	
	VOC Modu
What is a Hotswap?	Is the VO

CleanAir Workshops

Dust Monitoring Compliance

cleanair.com/workshops/dust

up ttage ed solar array ed battery size vs run time.

- users in Cloud
- Nephelometer
- lule OC module functioning?

AQS MODULES

Which modules can be used in AQS 1?

Carbon Monoxide Hydrogen Sulfide Methane Nitrogen Dioxide Ozone Sulfur Dioxide VOCL VOC

0-25ppm 0-10ppm 0-100ppm 0-500ppb 0-500ppb 0-10ppm 0-500ppb 0-30ppm

CleanAir Workshops

Dust Monitoring Compliance

Is the VOC Module Functioning?

VOC Modules have approximately 9 months of continual run time.

The most reliable method of verifying the functionality of any module is a challenge with a test gas. A bump test. Isobutylene @ 10ppm for VOC

Aeroqual's Cloud software provides a Diagnostics screen where the SRB & SRG mV readings can be seen. If these fall under 50 the module is no longer functioning properly.

	Tin	ne	
	1:47	PM	
4	1:46	PM	
	1:45	PM	
1	1:44	PM	1
	1:43	PM	
	1:42	PM	
	1:41	PM	
	1:40	PM	
	1:39	PM	
	1:38	PM	

CleanAir Workshops

Dust Monitoring Compliance

vo	C (ppm)	Raw (ppm)	SRB (mV)	SRG (mV)	Inlet
	0.70	0.452	418.142	382.733	Sample
	1.85	0.905	450.614	465.106	Sample
	3.34	2.961	365.905	424.612	Sample
	3.40	3.592	256.738	330.701	Sample
	1.24	3.339	119.069	187.879	Sample
	0.37	0.238	88.417	93.615	Sample
	0.10	0.315	76.603	83.465	Sample
	0.00	0.034	73.216	73.984	Sample
	0.00	0.014	72.633	72.942	Sample
	0.00	0.002	72.713	72.773	Sample

AUTOZERO NEPHELOMETER TIMING

The Nephelometer has a built-in autozero function—generally set to 1 day.

How to Change This?

On the right side the diagnostics screen you can select module settings. The TIMA field will contain a number relating to the minutes between autozeros. Runs approximately 5 minutes.

CleanAir Workshops

Dust Monitoring Compliance

НЗ	TIMA	TIMR	TEMA	TEMR	PWML	PWMH	HTR	GAIN
0	1440	50	0	45	3	0	0	1
1	1	30	0	0	1	0	1	1

DUPLICATE USERS IN CLOUD

If your user is set up as a Company Admin, you will be able to create a new user. Sometimes you will encounter the Error:

Email address * Already exists

This error indicates that this Email address has been used to create an account. It could be under any account. Aeroqual only allows an email to have one instance in the cloud for security reasons.

The only way to add this user is to use a secondary Email.

CleanAir Workshops

Dust Monitoring Compliance

Add new user	✓ X	
Full name	iei ei	
Don Allen		
Email address * Already exists		
dallen@cleanair.com	ser	
Role		

CALIBRATION

Suggested Calibration Gases

AQM 65 gas module	03	NO2	NOx	co	SO2	VOC	H2S	CO2
Gas used for calibration	03	NO2	NO2 or NO	со	502	Isobutylene C ₄ H ₈	H2S	CO2
Gas module measurement range	0 to 0.5 ppm	0 to 0.2 ppm	0 to 0.5 ppm	0 to 25 ppm	0 to 10.0 ppm	0 to 20 ppm	0 to 10 ppm	0 to 2000 ppm (0.2 %)
Span gas concentration for calibration	d 0,08 -	0.1 ppm	0.1 ppm	10.0 ppm	0.5 ppm	10.0 ppm	0.5 ppm	1000 ppm
Recommended Minimum, Meximum		0.05 - 0.150	0.05+0.2	5 - 15	0.2 - 1.5	5 - 15	0.2 - 1.5	roce ppm
Recommended cylinder concentration when using AirCal 1000 or AirCal 8000	Ozone is delivered by an	20 ppm	20 ppm	1000 ppm	20 ppm	1000 ppm	20 ppm	1000 ppm
1	Ozorie generator	10 - 100	10 - 100	500 - 5000	10 - 100	500 - 5000	10 - 100	500 - 1500
Recommended Gas cylinder from www.calgaz.com	N/A	20 ppm NO2 Balance AIR 8AL 58 liters C10 filting	20 ppm NO2 Balance AIR 8AL 58 liters C10 litting	1000 ppm CO Balance N2 6D 103 liters C10 fitting	20 ppm SO2 Balance N2 6AL 58 litres C10 litting	isobutylene 1000 ppm Balance Air 6D 103 litres	20 ppm H25 Balance N2 BAL 58 litres C10 fitting	1000 ppm CO2 Balance Air 6D 103 litres C10 fitting
Part number:		A0446046	A0446046	A0436734	A0446071	A0436843	A0446004	A0189932

Note: The AQM 65 must be zero calibrated using zero air, N2 can not be used for zero calibration.

CleanAir Workshops

Dust Monitoring Compliance

CALIBRATION

Equipment Needed

- Gases zero air and calibration ullet
- Low-Level modules require a gas divider •
- Ozone modules require an Ozone source \bullet

CleanAir Workshops

Dust Monitoring Compliance

WHAT IS A HOTSWAP?

Aeroqual recommends factory calibration of Sensor Heads annually.

Old Model

- 30-45 business day turn around •
- Poor customer experience ullet

Aeroqual "Hot Swap"

- Sensor Heads within 10-14 months of initial purchase are eligible
- Cabinet Modules within 20-28 months of initial purchase are • eligible.

Upon eligibility acceptance, a new Sensor will be drop-shipped to the supplied address. Arrival time depends on shipping. Sensors are newlymade and freshly-calibrated.

Dust Monitoring Compliance

CleanAir Workshops

SOLAR SETUP

Calculating Wattage and Amp Hours

- The AQS1 uses maximum 30 watts. ullet
- Batteries are generally in Amp hours. ullet

Calculating Battery Amp Hours

Wh= Device W x Time $Wh = 30W \times 1h$ 30Wh

> One Day = $24h \times 2.5Ah$ One Day = 60 Ah

CleanAir Engineering Inc. I www.cleanair.com

Dust Monitoring Compliance

CleanAir Workshops

cleanair.com/workshops/dust

Ah = Wh/VAh = 30Wh/12V2.5Ah

SOLAR SETUP

Sizing Arrays and Batteries

We set our solar systems to run four days with no sun.

Battery sized at 240Ah minimum.

One-Day Battery: 60Ah

We size our solar panel arrays at 400w.

Setup works in most of North America.

Dust Monitoring Compliance

CleanAir Workshops

Dust Monitoring Compliance Thursday, September 14, 2023

Afternoon Program

- 1:00 Hands-On Sessions (20-min. Rotating Stations)
 1:10-1:30 1:35-1:55 2:00-2:20
 2:30 Closing Remarks
- 2:40 Adjourn

Hands-On Sessions

Session 1: System Setup, Software Configuration and Data Access Session 2: Module Calibration, Module Exchange, and Hot-Swapping Session 3: Troubleshooting Secrets and Best Practices (Flow Rate and Leak Checks, Filter and Pump Exchanges)

CleanAir Workshops